LEARNING WITH COMPUTER SIMULATIONS: A CASE STUDY ON RESERVOIR TEMPERATURES IN CARNOT CYCLES
DOI:
https://doi.org/10.22600/1518-8795.ienci2024v29n3p172Palavras-chave:
Carnot cycles, Computer simulation, Learning, Reservoir temperatureResumo
Computer simulations have played a significant role in the development of physics, and in physics education as well. Researchers have addressed whether simulations promote learning, but few studies have investigated how simulations actually participate in learning processes. This study seeks to describe how simulations participate in conceptual learning. A case study is carried out using videotaped interviews with three groups of undergraduate students as they address a problem-solving task on thermodynamics (Carnot cycles). Students use a specifically developed simulation for support. The analysis is based on Coordination Class Theory (CCT). Results indicate that students not only use the simulation to think; it is actually a part of what they think. Students were found to engage in three different interaction dynamics with the simulation. Attuned with CCT, these were coded as either Extractive/Inferential/Articulative interactions. In each case, the substance of how these interactions input conceptual learning is described. Implications for future research and for teaching are given.Referências
Adams, W. K., Reid, S., LeMaster, R., McKagan, S., Perkins, K., Dubson, M., & Wieman, C. E. (2008). A study of educational simulations Part II-Interface Design. Journal of Interactive Learning Research, 19(4), 551-577. Recovered from: https://www.learntechlib.org/p/24364/
Alessi, S. M., & Trollip, S. R. (1984). Computer-based instruction: Methods and development. Prentice-Hall, Inc.
Amin, T. G., & Levrini, O. (2017). Facing the challenge of programmatic research on conceptual change. In Tamer & Levrini (Eds.) Converging Perspectives on Conceptual Change (pp. 334-351). London and New York: Routledge
Amin, T. G., Smith, C. L., & Wiser, M. (2014). Student conceptions and conceptual change: Three overlapping phases of research. In N. G. Lederman & S. K. Abell (Eds.) Handbook of research on science education (pp. 600-620). New York, United States of America: Routledge.
Barth‐Cohen, L. A., & Wittmann, M.C. (2017). Aligning coordination class theory with a new context: Applying a theory of individual learning to group learning. Science Education, 101(2), 333–363. https://doi.org/10.1002/sce.21264
Baser, M. (2006). Effects of conceptual change and traditional confirmatory simulations on pre-service teachers' understanding of direct current circuits. Journal of Science Education and Technology, 15, 367-381. https://doi.org/10.1007/s10956-006-9025-3
Basu, S., Sengupta, P., & Biswas, G. (2015) A Scaffolding Framework to Support Learning of Emergent Phenomena Using Multi-Agent-Based Simulation Environments. Research in Science Education, 45, 293-324. https://doi.org/10.1007/s11165-014-9424-z
Bell, R. L., & Trundle, K. C. (2008). The use of a computer simulation to promote scientific conceptions of moon phases. Journal of Research in Science Teaching, 45(3), 346-372.
https://doi.org/10.1002/tea.20227
Berners-Lee, T. (1999). Weaving the Web: The original design and ultimate destiny of the World Wide Web by its inventor. San Francisco, United States of America: Harper.
Bing, T. J., & Redish, E. F. (2012). Epistemic complexity and the journeyman-expert transition. Physical Review Special Topics-Physics Education Research, 8(1), 010105(11). https://doi.org/10.1103/PhysRevSTPER.8.010105
Buteler, L., & Coleoni, E. (2016) Solving problems to learn concepts, how does it happen? A case for buoyancy. Physical Review Physics Education Research, 12(2), 020144(12.
https://doi.org/10.1103/PhysRevPhysEducRes.12.020144
Colella, V. (2000) Participatory Simulations: Building Collaborative Understanding Through Immersive Dynamic Modeling. Journal of the Learning Sciences, 9(4), 471-500. http://dx.doi.org/10.1207/S15327809JLS0904_4
Develaki, M. (2019). Methodology and epistemology of computer simulations and implications for science education. Journal of Science Education and Technology, 28(4), 353-370. https://doi.org/10.1007/s10956-019-09772-0
diSessa, A., & Sherin, B. L. (1998) What changes in conceptual change? International Journal of Science Education, 20(10), 1155-1191. http://dx.doi.org/10.1080/0950069980201002
diSessa, A., & Wagner, J. F. (2005) What coordination has to say about transfer. In José P. Mestre (Ed.), Transfer of learning from a modern multi-disciplinary perspective (pp.121-154) Greenwich, United States of America: Information Age Publishing.
diSessa, A., Sherin, B., & Levin, M. (2016), Knowledge analysis: An introduction. In A. A. diSessa, M. Levin, & N. Brown (Eds.), Knowledge and interaction: A synthetic agenda for the learning sciences (30-71). New York., United States of America: Routledge. https://doi.org/10.4324/9781315757360
Dufresne, R., Mestre, J., Thaden-Koch, T., Gerace, W., & Leonard, W. (2005) Knowledge Representation and Coordination in the Transfer Process. In José P. Mestre (Ed.) Transfer of learning from a modern multi-disciplinary perspective. (155-215). Greenwich, United States of America: Information Age Publishing.
Gorsky, P., & Finegold, M. (1992). Using Computer Simulation to Restructure Students' Conceptions of Force. Journal of Computers in Mathematics and science teaching, 11(2), 163-78.
Greca, I. M., Seoane, E., & Arriassecq, I. (2014). Epistemological issues concerning computer simulations in science and their implications for science education. Science & Education, 23, 897-921. https://doi.org/10.1007/s11191-013-9673-7
Halldén, O., Haglund, L., & Strömdahl, H. (2007). Conceptions and contexts: On the interpretation of interview and observational data. Educational Psychologist, 42(1), 25-40.
https://doi.org/10.1080/00461520709336916
Hammer, D., & Berland, L. (2013) Confusing Claims for Data: A Critique of Common Practices for Presenting Qualitative Research on Learning. Journal of the Learning Sciences. 23(1), 37-46. https://doi.org/10.1080/10508406.2013.802652
Hargrave, C. P., & Kenton, J. M. (2000). Preinstructional simulations: Implications for science classroom teaching. Journal of Computers in Mathematics and Science Teaching, 19(1), 47-58. Recovered from https://www.learntechlib.org/p/8063/
Hutchins, E. (1991). The social organization of distributed cognition. In L. B. Resnick, J. M. Levine & S. D. Teasley (Eds). Perspectives on socially shared cognition (pp. 283-307). American Psychological Association. https://doi.org/10.1037/10096-012
Ingar, U., & Kraushaar, W.L. (1984) Introducción al estudio de la Mecánica, Materia y Ondas. Buenos Aires: Reverté.
Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. The Journal of the Learning Sciences. 4(1), 39-103. https://doi.org/10.1207/s15327809jls0401_2
Kluge, A. (2019) Learning science with an interactive simulator: negotiating the practice-theory barrier. International Journal of Science Education, 41(8), 1071-1095. https://doi.org/10.1080/09500693.2019.1590881
Koneman, E. W., Allen, S. D., Janda, W. M., Schreckenberger, P. C., & Winn, W. C. (2006). Diagnóstico Microbiologico Texto y Atlas a Color. (6a ed.). Buenos Aires, Argentina: Medica Panamericana.
Krajcik, J. S., & Mun, K. (2014) Promises and challenges of using learning technologies to promote student learning of science. In N. Lederman & S. Abell (Eds.) Handbook of research on science education (pp 337-360). New York, United States of America: Routledge.
Lally, D., & Forbes, C. (2019) Modelling water systems in an introductory undergraduate course: Students’ use and evaluation of data-driven, computer-based models. International Journal of Science Education, 41(14). https://doi.org/10.1080/09500693.2019.1657252
Levin, M. E. (2012) Modelling the co-development of strategic and conceptual knowledge dring mathematical problem solving. [unpublished doctoral dissertation] University of California, Berkeley.
Levrini, O., & diSessa, A. (2008) How students learn from multiple contexts and definitions: Proper time as a coordination class. Physical Review Physics Education Research. 4(1)
https://doi.org/10.1103/PhysRevSTPER.4.010107
Lewis, C. (2012). Applications of out-of-domain knowledge in students’ reasoning about computer program state [Unpublished doctoral dissertation]. University of California, Berkeley.
Lowe, R. (2004). Interrogation of a dynamic visualization during learning. Learning and Instruction, 14(3), 257-274. https://doi.org/10.1016/j.learninstruc.2004.06.003
Martinez, G., Naranjo, F. L., Perez, A. L., Suero, M. I., & Pardo, P. J. (2011). Comparative study of the effectiveness of three learning environments: Hyper-realistic virtual simulations, traditional schematic simulations and traditional laboratory. Physical Review Special Topics-Physics Education Research, 7(2). https://doi.org/10.1103/PhysRevSTPER.7.020111
Parnafes, O., & diSessa, A. (2013). Microgenetic learning analysis: A methodology for studying knowledge in transition. Human Development, 56(1), 5-37. https://doi.org/10.1159/000342945
Parnafes, O. (2007) What Does “Fast” Mean? Understanding the Physical World Through Computational Representations. Journal of the Learning Sciences, 16(3), 415-450. https://doi.org/10.1080/10508400701413443
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Toward a theory of conceptual change. Science education, 66(2), 211-227. https://doi.org/10.1002/sce.3730660207
Ramasundaram, V., Grunwald, S., Mangeot, A., Comerford, N. B., & Bliss, C. M. (2005). Development of an environmental virtual field laboratory. Computers & Education, 45(1), 21-34. https://doi.org/10.1016/j.compedu.2004.03.002
Resnick, R, Halliday, D., & Krane, K.S. (2010) Física. Vol 1 (8a. ed.). Mexico, Mexico: Grupo Editorial Patria.
Ronen, M., & Eliahu, M. (2000). Simulation—A bridge between theory and reality: The case of electric circuits. Journal of computer assisted learning, 16(1), 14-26. https://doi.org/10.1046/j.1365-2729.2000.00112.x
Rose, D. H., & Meyer, A. (2002). A Teaching Every student in the Digital Age: Universal Design for learning. Association for Supervision and Curriculum Development, 1703 N. Beauregard St., Alexandria, VA 22311-1714, 2002.
Sears, F.W., & Salinger, G.L. (1980) Termodinámica, teoría cinética y termodinámica estadística. Barcelona, España: Reverté.
Sengupta, P., Krinks, K.D., & Clark, D.B. (2015). Learning to Deflect: Conceptual Change in Physics during Digital Game Play. Journal of the Learning Sciences, 24(4), 638-674. https://doi.org/10.1080/10508406.2015.1082912
Serway, R., & Jewett Jr., J.W. (2018) Física para ciencias e ingeniería. Vol 1. (10a. ed.) Mexico, Mexico: Cengage Learner Editores.
Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370. https://doi.org/10.1080/09500693.2011.605182
Smith, T. I., Christensen, W. M., Mountcastle, D. B., & Thompson, J. R. (2015). Identifying student difficulties with entropy, heat engines, and the Carnot cycle. Physical Review Special Topics-Physics Education Research, 11(2). https://doi.org/10.1103/PhysRevSTPER.11.020116
Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54(4), 1078-1088. https://doi.org/10.1016/j.compedu.2009.10.012
Velasco, J., & Buteler, L. (2017). Simulaciones computacionales en la enseñanza de la física: una revisión crítica de los últimos años. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 35(2), 161-178. https://doi.org/10.5565/rev/ensciencias.2117
Velasco, J., Buteler, L., & Coleoni, E. (2021). Conceptual development through computer simulations: a case study in physics. Revista de Enseñanza de la Física, 33(2), 529-536. https://doi.org/10.5565/rev/ensciencias.2117
Velasco, J., Buteler, L., Briozzo, C., & Coleoni, E. (2022) Learning Entropy Among Peers Through the Lens of Coordination Class Theory. Physical Review Physics Education Research, 18. https://doi.org/10.1103/PhysRevPhysEducRes.18.010127
Villarreal, M.E., & Borba, M.C. (2010) Collectives of humans-with-media in mathematics education: notebooks, blackboards, calculators, computers and … notebooks throughout 100 years of ICMI. ZDM Mathematics Education, 42, 49–62. https://doi.org/10.1007/s11858-009-0207-3
Vlachopoulos, D., & Makri, A. (2017). The effect of games and simulations on higher education: a systematic literature review. International Journal of Educational Technology in Higher Education, 14(1), 1-33. https://doi.org/10.1186/s41239-017-0062-1
Vosniadou, S. (Ed.). (2008). International handbook of research on conceptual change. New York, United States of America: Routledge
Windschitl, M. (2001). Using simulations in the middle school: Does assertiveness of dyad partners influence conceptual change? International Journal of Science Education, 23(1), 17-32. https://doi.org/10.1080/09500690121082
Wittmann, M. C. (2002) The Object Coordination Class Applied to Wave Pulses: Analysing Student Reasoning in Wave Physics. International Journal of Science Education, 24(1), 97-118. https://doi.org/10.1080/09500690110066944
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Juan José Velasco, Laura María Buteler, Enrique Andres Coleoni

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
A IENCI é uma revista de acesso aberto (Open Access), sem que haja a necessidade de pagamentos de taxas, seja para submissão ou processamento dos artigos. A revista adota a definição da Budapest Open Access Initiative (BOAI), ou seja, os usuários possuem o direito de ler, baixar, copiar, distribuir, imprimir, buscar e fazer links diretos para os textos completos dos artigos nela publicados.
O autor responsável pela submissão representa todos os autores do trabalho e, ao enviar o artigo para a revista, está garantindo que tem a permissão de todos para fazê-lo. Da mesma forma, assegura que o artigo não viola direitos autorais e que não há plágio no trabalho. A revista não se responsabiliza pelas opiniões emitidas.
Todos os artigos são publicados com a licença Creative Commons Atribuição-NãoComercial 4.0 Internacional. Os autores mantém os direitos autorais sobre suas produções, devendo ser contatados diretamente se houver interesse em uso comercial dos trabalhos.