Habilidades de Pensamiento de Orden Superior en La Enseñanza de las Ciencias Naturales: Una propuesta a partir de un análisis Bibliométrico

Autores

DOI:

https://doi.org/10.22600/1518-8795.ienci/2025v30n2p35

Palavras-chave:

enseñanza de las ciencias, Habilidades de pensamiento de orden superior, Pensamiento científico

Resumo

La inclusión de la enseñanza de las habilidades de pensamiento de orden superior (HOTS) en la educación en ciencias busca enseñar a pensar a los estudiantes para formar ciudadanos que tomen decisiones argumentadas sobre las causas, efectos y consecuencias de los avances científicos y tecnológicos, a los cuales se enfrentarán en la vida. De acuerdo con lo anterior, se presenta el diagnóstico y estado actual de la inclusión de las HOTS en la enseñanza de las ciencias durante el periodo comprendido entre el 2000 y 2022. Para ello se realizó un análisis bibliométrico, donde se construyeron y analizaron indicadores de cantidad y calidad, así como, un análisis de tendencias de las investigaciones publicadas. Se identificaron 23 revistas y se reconocieron dos grupos de investigación en Israel, que centran sus investigaciones en el desarrollo de HOTS en los estudiantes de ciencias. Por otra parte, se resalta que las investigaciones giran en torno a dos ejes: i) modelos didácticos para la implementación de HOTS y ii) desarrollo profesional docente. Finalmente, se plantea una propuesta desde una perspectiva constructivista, sobre cuáles son las habilidades de pensamiento de orden superior que se deben promover en la enseñanza de las ciencias.

Biografia do Autor

  • Álvaro García MArtínez, Universidad Distrital Francisco José de Caldas
    Licenciado en Química, Universidad Distrital Francisco José de Caldas. Magíster en Docencia de la Química, Universidad Pedagógica Nacional. Magíster en Investigación en Didáctica de las Ciencias Experimentales y Doctor en Didáctica de las Ciencias Experimentales y las Matemáticas, Universidad Autónoma de Barcelona. Ha desarrollado investigaciones con recursos de financiamiento externo, entre ellas: Unión Europea, CONICYT (Chile), Colciencias, IDEP y Secretaría de Educación de Bogotá. Es Miembro fundador del Grupo de Investigación en Didáctica de la Química, DIDAQUIM, Director del Grupo de Investigación en Educación en Ciencias Experimentales, GREECE, y Miembro de la Red Latinoamericana de Investigadores en Didáctica de las Ciencias. Es autor de publicaciones (artículos, capítulos de libros y libros) en Didáctica de las Ciencias en las siguientes líneas: Relaciones entre historia, filosofía y enseñanza de las ciencias, evaluación, diseño curricular, enseñanza y aprendizaje de las ciencias, tic y enseñanza de las ciencias y formación de profesores.

Referências

Adúriz, A., & Izquierdo, M. (2009). Un modelo de modelo científico para la enseñanza de las ciencias naturales. Revista Electrónica de Investigación En Educación En Ciencias, 4, 40–49. http://www.redalyc.org/articulo.oa?id=273320452005

Alfuqaha, I., & Tobasi, A. (2015). Creative Thinking of University Teachers in the Age of Intellectual Capital: Is It Affected By Personality Types and Traits? I-Manager’s Journal on Educational Psychology, 9(2), 8. https://doi.org/10.26634/jpsy.9.2.3650

Amer, A. (2005). Analytical Thinking. Center of advanced study and research in engineering sciences, Faculty of Engineering- Cairo University (CAPSCU). http://www.pathways.cu.edu.eg/subpages/analytical-engine.htm

Anderson, L. W., Krathwohl Peter W Airasian, D. R., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., & Wittrock, M. C. (2001). A Taxonomy for Learning, Teaching, and Assessing. A Revision of Blooms’ Taxonomyof Educational Objectives. Longman.

Apino, E., & Retnawati, H. (2017). Developing Instructional Design to Improve Mathematical Higher Order Thinking Skills of Students. Journal of Physics: Conference Series, 812(1), 1–8. https://doi.org/10.1088/1742-6596/755/1/011001

Avargil, S., Herscovitz, O., & Dori, Y. J. (2012). Teaching Thinking Skills in Context-Based Learning: Teachers’ Challenges and Assessment Knowledge. Journal of Science Education and Technology, 21(2), 207–225. https://doi.org/10.1007/s10956-011-9302-7

Avargil, S., Herscovitz, O., & Dori, Y. J. (2013). Challenges in the transition to large-scale reform in chemical education. Thinking Skills and Creativity, 10, 189–207. https://doi.org/10.1016/j.tsc.2013.07.008

Báez A, J., & Onrubia G, J. (2016). Una revisión de tres modelos para enseñar las habilidades de pensamiento en el marco escolar. Perspectiva Educacional, 55(1), 94–113. https://doi.org/10.4151/07189729-vol.55-iss.1-art.347

Baharin, N., Kamarudin, N., & Manaf, U. K. A. (2018). Integrating STEM Education Approach in Enhancing Higher Order Thinking Skills. International Journal of Academic Research in Business and Social Sciences, 8(7), 810–821. https://doi.org/10.6007/ijarbss/v8-i7/4421

Barberá, O., & Valdés, P. (1986). El trabajo práctico en la enseñanza de las ciencias: Una revisión. Enseñanza de Las Ciencias, 14(3), 365–379. https://raco.cat/index.php/Ensenanza/article/view/21466/93439

Barratt, C. (2014). Higher Order Thinking And Assessment. International Seminar on Current Issues in Primary Education: Prodi PGSD Universitas Muhammadiyah Makasar Citado en R, N., & Mucti, A. (2019). EFEKTIVITAS PENGGUNAAN LKM BERBASIS HOTS (HIGHER ORDER THINKING SKILLS) TERHADAP HASIL BELAJAR MAHASISWA PENDIDIKAN MATEMATIKA. Journal of Honai Math, 2(2), 117–128. https://doi.org/10.30862/jhm.v2i2.67

Bartlett, F. (1958). Thinking: An experimental and social study. Allen & Unwin.

Belmonte, V. (2013). Inteligencia emocional y creatividad: factores predictores del rendimiento académico [Universidad de Murcia, España]. http://hdl.handle.net/10201/35772

Biggs, J. B., & Collins, K. F. (1981). Evaluating the Quality of Learning: The SOLO Taxonomy (Structure of the ObservedLearning Outcome) (A. J. Edward (Ed.)). Academic Press.

Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals (1era ed.). Longman Group. https://eclass.uoa.gr/modules/document/file.php/PPP242/Benjamin%20S.%20Bloom%20-%20Taxonomy%20of%20Educational%20Objectives%2C%20Handbook%201_%20Cognitive%20Domain-Addison%20Wesley%20Publishing%20Company%20%281956%29.pdf

Boon, M., Orozco, M., & Sivakumar, K. (2022). Epistemological and educational issues in teaching practice-oriented scientific research: roles for philosophers of science. European Journal for Philosophy of Science, 12(1), 1–23. https://doi.org/10.1007/s13194-022-00447-z

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain, mind, experience, and school. National Research Council, National Academy Press. https://doi.org/https://doi.org/10.17226/9853.

Bruer, J. T. (1993). Schools for thought. MIT Press.

Caamaño, A. (2003). Los trabajos prácticos en ciencias. Enseñar Ciencias, 95–118. https://formacioncontinuaedomex.wordpress.com/wp-content/uploads/2012/12/s3p11.pdf

Carlsen, W. S. (1993). Teacher knowledge and discourse control: Quantitative evidence from novice biology teachers’ classrooms. Journal of Research in Science Teaching, 30(5), 471–481. https://doi.org/10.1002/tea.3660300506

Castillo, M. C. (2021). El trabajo practico en la enseñanza de las ciencias: Una revisión preliminar. Convergencia Educativa, 9, 30–44. https://doi.org/https://doi.org/10.29035/rce.9.30

Chen, D., & Stroup, W. (1993). General system theory: Toward a conceptual framework for science and technology education for all. Journal of Science Education and Technology, 2(3), 447–459. https://doi.org/10.1007/BF00694427

Chonkaew, P., & Faikhamta, C. (2016). Research and Practice attitudes towards science learning of grade-11 and mathematics ( STEM education ) in the study. Chemistry Education Research and Practice, 17, 842–861. https://doi.org/10.1039/c6rp00074f

Crujeiras, B., & Jiménez-Aleixandre, M. P. (2013). Challenges in the implementation of a competency-based curriculum in Spain. Thinking Skills and Creativity, 10, 208–220. https://doi.org/10.1016/j.tsc.2013.07.001

Cuccio-Schirripa, S., & Steiner, H. E. (2000). Enhancement and analysis of science question level for middle school students. Journal of Research in Science Teaching, 37, 210–2024. https://doi.org/http://dx.doi.org/10.1002/(SICI)1098-2736(200002)37:2%3C210::AID-TEA7%3E3.0.CO;2-I

De Longhi, a. L., Ferreyra, a., Peme, C., Bermudez, G. M. a., Quse, L., Martínez, S., Iturralde, C., & Campaner, G. (2012). La interacción comunicativa en clases de ciencias naturales. Un análisis didáctico a través de circuitos discursivos. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 9(2), 178–195. http://www.redalyc.org/resumen.oa?id=92024542002

Dillon, J., & Scott, W. (2002). Perspectives on environmental education-related research in science education. International Journal of Science Education, 24(11), 1111–1117. https://doi.org/10.1080/09500690210137737

Dori, Y. J., & Herscovitz, O. (1999). Question-posing capability as an alternative evaluation method: Analysis of an environmental case study. Journal of Research in Science Teaching, 36(4), 411–430. https://doi.org/10.1002/(SICI)1098-2736(199904)36:4<411::AID-TEA2>3.0.CO;2-E

Dori, Y. J., Tal, R. T., & Tsaushu, M. (2003). Teaching Biotechnology Through Case Studies - Can We Improve Higher Order Thinking Skills of Nonscience Majors? Science Education, 87(6), 767–793. https://doi.org/10.1002/sce.10081

Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312. https://doi.org/10.1002/(sici)1098-237x(200005)84:3<287::aid-sce1>3.0.co;2-a

Durand, Â. M., & Garcia, I. K. (2020). Pesquisa Bibliográfica: As Reações de Oxirredução de Acordo com os Modelos Mentais. Investigacoes Em Ensino de Ciencias, 25(3), 108–144. https://doi.org/10.22600/1518-8795.IENCI2020V25N3P108

Duschl, R. A. (1990). Restructuring science education: The importance of theories and their development. In New York. Teachers College Press.

Espinoza, P. L. (2021). Metacognitive, Critical and Creative Thinking in Educative Contexts: Conceptualization and Didactic Suggestions. Psicologia Escolar e Educacional, 25, 1–8. https://doi.org/10.1590/2175-35392021220278

Fensham, P. J., & Bellocchi, A. (2013). Higher order thinking in chemistry curriculum and its assessment. Thinking Skills and Creativity, 10, 250–264. https://doi.org/10.1016/j.tsc.2013.06.003

Fitri, S. G. S., Hendriyani, M. E., & Sari, I. J. (2017). The Development of Biotechnology’S Learning Instruments Oriented Higher-Order Thinking and the Utilization of Natural Resources Tunda’S Island Potential. Jurnal Penelitian Dan Pembelajaran IPA, 3(1), 41. https://doi.org/10.30870/jppi.v3i1.1085

García-Martínez, A. (2021). Las comunidades de desarrollo profesional como vía de formación docente. Universidad Distrital Francisco José de Caldas. https://die.udistrital.edu.co/publicaciones/las_comunidades_de_desarrollo_profesional_como_via_de_formacion_docente

Gil, A. C. (2002). Como Elaborar Projetos de Pesquisa (4a. ed.). Atlas.

Guidoni, P. (1985). On natural thinking. European Jornal of Science Education, 7(2), 133–140. https://doi.org/https://doi.org/10.1080/0140528850070204

Heffington, D. (2019). Higher order thinking skills among Latinx English language learners in elementary classrooms [University of Florida Digital Collections]. https://ufdc.ufl.edu/ufe0054346/00001

Herscovitz, O., Kaberman, Z., Saar, L., & Dori, Y. J. (2012). The relationship between metacognition and the ability to pose questions in chemical education. In Contemporary Trends and Issues in Science Education (Vol. 40). https://doi.org/10.1007/978-94-007-2132-6_8

Hill, C. T. (2007). The post-scientific society. Issues in Science and Technology, 24(1). https://issues.org/c_hill/

Hogan, K., Nastasi, B. K., & Pressley, M. (2000). Discourse patterns and collaborative scientific reasoning in peer and teacher-guided discussions. Cognition and Instruction, 17(4), 379–432. https://doi.org/10.1207/S1532690XCI1704_2

Ichsan, I. Z., Hasanah, R., Ristanto, R. H., Rusdi, R., Cahapay, M. B., Widiyawati, Y., & Rahman, M. M. (2020). Designing an Innovative Assessment of HOTS in the Science Learning for the 21st Century. Jurnal Penelitian Dan Pembelajaran IPA, 6(2), 211. https://doi.org/10.30870/jppi.v6i2.4765

Izquierdo, A. M., & Sanmartí. (2000). Habilidades cognitivo-lingüísticas en la enseñanza de las ciencias naturales. In J. Jorba, I. Gómez, Á. Prat, & P. Benejam (Eds.), Hablar y escribir para aprender: uso del lenguaje en situación de enseñanza – aprendizaje desde las áreas curriculares.

Izquierdo, M. (2007). Enseñar ciencias, una nueva ciencia. Enseñanza de Las Ciencias Sociales, 6(Juny), 125–138. https://www.redalyc.org/pdf/3241/324127626010.pdf

Kao, C. (2014). Exploring the relationships between analogical , analytical , and creative thinking. Thinking Skills and Creativity, 13, 80–88. https://doi.org/10.1016/j.tsc.2014.03.006

Koch, A. (2017). The effect of higher order thinking on reading achievement. Brenau University.

Kwangmuang, P., Jarutkamolpong, S., Sangboonraung, W., & Daungtod, S. (2021). The development of learning innovation to enhance higher order thinking skills for students in Thailand junior high schools. Heliyon, 7(6), e07309. https://doi.org/10.1016/j.heliyon.2021.e07309

Lacon, N., & Ortega, S. (2008). Cognición, metacognición y escritura. Revista Signos, 41(67), 231–255. https://doi.org/http://dx.doi.org/10.4067/S0718-09342008000200009

Levine, D. U. (1993). Reforms that can work. American School Board Journal, 180, 31–34.

Lewis, A., & Smith, D. (1993). Defining Higher Order Thinking. Theory Into Practice, 32(3), 131–137. https://doi.org/10.1080/00405849309543588

Maier, N. R. F. (1933). An aspect of human reasoning. British Journal of Psychology, 24(144–155). https://doi.org/https://doi.org/10.1111/j.2044-8295.1933.tb00692.x

Maier, N. R. F. (1937). Reasoning in rats and human beings. Psychological Review, 44(5), 365–378. https://doi.org/https://doi.org/10.1037/h0062900

Márquez, C., & Prat, A. (2005). Leer en clase de ciencias. Enseñanza de Las Ciencias, 23(3), 431–440. https://doi.org/10.5565/rev/ensciencias.3833

Marzano, R. J., & Kendall, J. S. (2007). The New Taxonomy of Educational Objectives (Second). Corwin Press. https://www.ifeet.org/files/The-New-taxonomy-of-Educational-Objectives.pdf

Miri, B., David, B. C., & Uri, Z. (2007). Purposely teaching for the promotion of higher-order thinking skills: A case of critical thinking. Research in Science Education, 37(4), 353–369. https://doi.org/10.1007/s11165-006-9029-2

Miri, B., & Dori, Y. J. (2009). Enhancing higher order thinking skills among inservice science teachers via embedded assessment. Journal of Science Teacher Education, 20(5), 459–474. https://doi.org/10.1007/s10972-009-9141-z

Mitarlis, Ibnu, S., Rahayu, S., & Sutrisno. (2020). The effectiveness of new inquiry-based learning (NIBL) for improving multiple higher-order thinking skills (M-HOTS) of prospective chemistry teachers. European Journal of Educational Research, 9(3), 1309–1325. https://doi.org/10.12973/eu-jer.9.3.1309

National Research Council. (2012). A framework for K-12 science Education: practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards, Board on Science Education, Division of Behavioral and Social Sciences and Education. http://www.nap.edu/catalog.php?record_id=13165

Newmann, F. M. (1990). Higher order thinking in teaching social studies: A rationale for the assessment of classroom thoughtfulness. Journal of Curriculum Studies, 22(1), 41–56. https://doi.org/10.1080/0022027900220103

OCDE. (2022). El programa PISA de la OCDE Qué es y para qué sirve. El Programa PISA de La OCDE Qué Es y Para Qué Sirve, 34. http://www.oecd.org/pisa/39730818.pdf

Oliva, J. M. (2019). Distintas acepciones para la idea de modelización en la enseñanza de las ciencias. Enseñanza de Las Ciencias, 2, 5. https://doi.org/https://doi.org/10.5565/rev/ensciencias.2648

Osborne, J. (2013). The 21st century challenge for science education: Assessing scientific reasoning. Thinking Skills and Creativity, 10, 265–279. https://doi.org/10.1016/j.tsc.2013.07.006

Osborne, J., & Allchin, D. (2024). Science literacy in the twenty-first century: informed trust and the competent outsider. International Journal of Science Education, 1–22. https://doi.org/10.1080/09500693.2024.2331980

Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. A Report to the Nuffield Foundation. In London: Nuffield Foundation (Issue January). https://www.nuffieldfoundation.org/about/publications/science-education-in-europe-critical-reflections

Partnership for 21st Century Learning. (2019). Framework for 21st century learning definitions. In Framework for21" century learning. Battelle for Kids. All Rights Reserved. https://static.battelleforkids.org/documents/p21/P21_Framework_DefinitionsBFK.pdf

Paz, V. A., Márquez, C., & Adúriz-Bravo, A. (2008). Análisis de una actividad científica escolar diseñada para enseñar qué hacen los científicos y la función de nutrición en el modelo de ser vivo. Revista Latinoamericana De Estudios Educativos, 4(2), 11–27. http://www.redalyc.org/articulo.oa?id=134112597002%0ACómo

Pellegrino, J. W., & Hilton, M. L. (2013). Education for life and work: Developing transferable knowledge and skills in the 21st century. In Education for Life and Work: Developing Transferable Knowledge and Skills in the 21st Century. https://doi.org/10.17226/13398

Perkins, D. N. (1992). Smart schools: From training memories to educating minds. Free Press.

Perkins, D. N., & Unger, C. (1999). Teaching and learning for understanding. In C. M. Reigeluth (Ed.), Instructional-design theories and models. A new paradigm of instructional theory (pp. 91–114). Lawrence Erlbaum Associates.

Peterson, P. L. (1988). Teaching for higher order thinking in mathematics: The challenge for the next decade. In D. A. Grows & T. J. Cooney (Eds.), Perspectives on research on effective mathematical learning (pp. 2–26). Lawrence Erlbaum Associates.

Pizzini, E. L., Shepardson, D. P., & Abell, S. K. (1989). A rationale for and the development of a problem solving model of instruction in science education. Science Education, 73(5), 523–534. https://doi.org/10.1002/sce.3730730502

Pogrow, S. (1988). Teaching thinking to at-risk elementary students. Educational Leadership, 45, 79–85. https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el_198804_pogrow.pdf

Pogrow, S. (1996). HOTS: Helping low achievers in grades 4–7. Principal, 76, 34–35.

Raiyn, J., & Tilchin, O. (2016). The Impact of Adaptive Complex Assessment on the HOT Skill Development of Students. World Journal of Education, 6(2), 12–19. https://doi.org/10.5430/wje.v6n2p12

Resnick, L. (1987). Education and Learning to Think. National Academy Press. https://doi.org/https://doi.org/10.17226/1032

Resnick, L. B., & Klopfer, L. E. (1989). Toward the thinking curriculum: An overview. In L. B. Resnick & L. E. Klopfer (Eds.), Toward the Thinking Curriculum: Current Cognitive Research (pp. 1–18). Yearbook of the Association for Supervision and Curriculum Development (ASCD). https://eric.ed.gov/?id=ED328871

Richland, L. E., & Simms, N. (2015). Analogy, higher order thinking, and education. Wiley Interdisciplinary Reviews: Cognitive Science, 6(2), 177–192. https://doi.org/10.1002/wcs.1336

Russell, T. L. (1983). Analyzing arguments in science classroom discourse: Can teachers’ questions distort scientific authority? Journal of Research in Science Teaching, 20(1), 27–45. https://doi.org/10.1002/tea.3660200104

Saifer, S. (2018). HOT Skills: Developing Higer-Order Thinking in Young Learners (Vol. 19, Issue 5). Redleaf Press.

Sanmartí, N., Izquierdo, M., & García, P. (2001). Hablar y escribir una condición necesaria para aprender ciencias. Cuadernos de Pedagogía, 281, 5. https://ddd.uab.cat/record/164407

Scardamalia, M., & Bereiter, C. (1992). Text-Based and Knowledge-Based Questioning by Children. Cognition and Instruction, 9(3), 177–199. https://doi.org/10.1207/s1532690xci0903_1

Schraw, G., & Robinson, D. R. (Eds.). (2011). Assessment of higher order thinking skills. Information Age Publishing Inc.

Shepardson, D. P., & Pizzini, E. L. (1991). Questioning levels of junior high school science textbooks and their implications for learning textual information. Science Education, 75(6), 673–682. https://doi.org/10.1002/sce.3730750607

Sinatra, G. M., & Taasoobshirazi, G. (2017). The self-regulation of learning and conceptual change in science: Research, theory, and educational applications. In D. H. Schunk & J. A. Greene (Eds.), Handbook of self-regulation of learning and performance (pp. 153–165). Routledge/Taylor & Francis Group. https://doi.org/https://doi.org/10.4324/9781315697048-10

Soto, C., Blume, A. P. G. De, Jacovina, M., Benson, N., Riffo, B., Soto, C., Blume, A. P. G. De, Jacovina, M., Benson, N., Riffo, B., Soto, C., Blume, A. P. G. De, Jacovina, M., Mcnamara, D., & Soto, C. (2019). Reading comprehension and metacognition : The importance of inferential skills Reading comprehension and metacognition : The importance of inferential skills. Cogent Education, 6(1). https://doi.org/10.1080/2331186X.2019.1565067

Su, K. D. (2021). A new assessment of hocs-oriented learning for students’ higher-order thinking abilities by marzano’s taxonomy. Journal of Baltic Science Education, 20(2), 305–315. https://doi.org/10.33225/jbse/21.20.305

Suwono, H., & Dewi, E. K. (2019). Problem-based learning blended with online interaction to improve motivation, scientific communication and higher order thinking skills of high school students. AIP Conference Proceedings, 2081. https://doi.org/10.1063/1.5094001

Tsaparlis, G. (2020). Higher and lower-order thinking skills: The case of chemistry revisited. Journal of Baltic Science Education, 19(3), 467–483. https://doi.org/10.33225/jbse/20.19.467

Utomo, A. P., Narulita, E., & Shimizu, K. (2018). Diversification of Reasoning Science Test Items of Timss Grade 8 Based on Higher Order Thinking Skills : a Case Study of Indonesian. Journal of Baltic Science Education, 17(1), 152–161. https://doi.org/https://doi.org/10.33225/jbse/18.17.152

Vázquez, Á., & Manassero, M. A. (2005). La ciencia escolar vista por los estudiantes. Bordón. Revista de Pedagogía, 57(5), 717–736. https://recyt.fecyt.es/index.php/BORDON/article/view/40802

Webb, N. L. (1997). Criteria for Alignment of Expectations and Assessments in Mathematics and Science Education. In National Institute for Science Education (NISE) Publications (Issue 8). https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.507.4349&rep=rep1&type=pdf

Webb, N. L. (2007). Issues Related to Judging the Alignment of Curriculum Standards and Assessments. Applied Measurement in Education, 20(1), 7–25. https://doi.org/10.1080/08957340709336728

White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3–118. https://doi.org/10.1207/s1532690xci1601_2

Wilks, S. (1995). Critical and creative thinking: Strategies for classroom inquiry. Eleanor Curtain.

Yulina, I. K., Permanasari, A., Hernani, H., & Setiawan, W. (2018). Analytical thinking skill profile and perception of pre service chemistry teachers in analytical chemistry learning Analytical thinking skill profile and perception of pre service chemistry teachers in analytical chemistry learning. Journal of Physics: Conference Series, 1157, 042046, 0–7. https://doi.org/10.1088/1742-6596/1157/4/042046

Zeidler, D. L., Lederman, N. G., & Taylor, S. C. (1992). Fallacies and student discourse: Conceptualizing the role of critical thinking in science education. Science Education, 76(4), 437–450. https://doi.org/10.1002/sce.3730760407

Zohar, A. (2004). Higher order thinking in science classrooms: Students’ learning and teachers’ professional development. Springer Dordrecht. https://doi.org/10.1007/978-1-4020-1854-1

Zohar, A. (2006). The nature and development of teachers’ meta-strategic knowledge in the context of teaching higher order thinking. The Journal of the Learning Sciences, 15(3), 331–377. https://doi.org/https://doi.org/10.1207/s15327809jls1503_2

Zohar, A. (2007). El pensamiento de orden superior en las clases de ciencias : objetivos, medios y resultados de investigación. Enseñanza de Las Ciencias. Revista de Investigación y Experiencias Didácticas, 24(2), 157–172. https://doi.org/10.5565/rev/ensciencias.3797

Zohar, A. (2013). Challenges in wide scale implementation efforts to foster higher order thinking (HOT) in science education across a whole school system. Thinking Skills and Creativity, 10, 233–249. https://doi.org/10.1016/j.tsc.2013.06.002

Zohar, A., & Ben-Ari, G. (2022). Teacher’knowledge and professional development for metacognitive instruction in the context of higher order thinking. In Metacognition and learning (pp. 855–895). Springer. https://doi.org/10.1007/s11409-022-09310-1

Zohar, A., & Dori, Y. J. (2003). Higher Order Thinking Skills and Low-Achieving Students: Are They Mutually Exclusive? The Journal of the Learning Sciences, 12(2), 145–181. https://doi.org/10.1207/S15327809JLS1202

Zohar, A., & Schwartzer, N. (2005). Assessing teachers’ pedagogical knowledge in the context of teaching higher-order thinking. International Journal of Science Education, 27(13), 1595–1620. https://doi.org/10.1080/09500690500186592

Zoller, U. (1999). Teaching tomorrow’s college science courses – Are we getting it right? Journal of College Science Teaching, 29(404–414). https://www.proquest.com/scholarly-journals/teaching-tomorrows-college-science-courses-are-we/docview/200355075/se-2

Zoller, U., Dori, Y. J., & Lubezky, A. (2002). Algorithmic, LOCS and HOCS (chemistry) exam questions: Performance and attitudes of college students. International Journal of Science Education, 24(2), 185–203. https://doi.org/10.1080/09500690110049060

Publicado

2025-08-31

Edição

Seção

Artigos

Como Citar

Sánchez Galvis, D. M., & García MArtínez, Álvaro. (2025). Habilidades de Pensamiento de Orden Superior en La Enseñanza de las Ciencias Naturales: Una propuesta a partir de un análisis Bibliométrico. Investigações Em Ensino De Ciências, 30(2), 35-75. https://doi.org/10.22600/1518-8795.ienci/2025v30n2p35