MODELAGEM ANALÓGICA NO ENSINO DE CIÊNCIAS

Autores

  • Nilmara Braga Mozzer Departamento de Química – Instituto de Ciências Exatas Universidade Federal de Minas Gerais Av. Presidente Antônio Carlos, 6627, Belo Horizonte, MG, Brasil
  • Rosária da Silva Justi Departamento de Química – Instituto de Ciências Exatas Universidade Federal de Minas Gerais Av. Presidente Antônio Carlos, 6627, Belo Horizonte, MG, Brasil

DOI:

https://doi.org/10.22600/1518-8795.ienci2018v23n1p155

Palavras-chave:

modelagem analógica, analogias, ensino de ciências

Resumo

Neste artigo, nos propusemos a investigar: (i) as etapas que podem ser usadas para guiar a proposição e o desenvolvimento de atividades de modelagem analógica no ensino de ciências; e (ii) como atividades de modelagem analógica propostas com base naquelas etapas podem ter contribuído para que os estudantes de ciências vivenciassem os subprocessos do raciocínio analógico. Para atender ao primeiro propósito, adaptamos as etapas apresentadas na literatura para o processo de modelagem de forma que possibilitassem a elaboração, crítica e revisão de modelos e analogias. Para atender ao segundo propósito, realizamos um estudo empírico no qual desenvolvemos uma sequência ensino sobre o tema dissolução, fundamentada na modelagem analógica. A sequência foi desenvolvida em uma turma de Química do primeiro ano do ensino médio e deu origem ao estudo de caso analisado neste artigo. Nossos resultados evidenciaram elementos específicos das atividades de modelagem analógica que favoreceram a ocorrência dos subprocessos de raciocínio analógico, inclusive daqueles identificados como não espontâneos em estudos anteriores. Destacamos como uma das implicações deste estudo, que a descrição proposta para as etapas da modelagem analógica pode orientar professores e pesquisadores na proposição e condução de atividades voltadas para o ensino de ciências, nas quais modelos e analogias são criados, criticados e revisados pelos estudantes, num processo em que os significados vão sendo gradualmente negociados na tentativa de se compreender a entidade modelada.

Referências

Acher, A., Arcà, M., & Sanmartí, N. (2007). Modeling as a Teaching Learning Process for Understanding Materials: A Case Study in Primary Education. Science Education, 91(3), 398-418. DOI:10.1002/sce.20196

Andersson, B. (1990). Pupils' conceptions of matter and its transformations (age 12-16). Studies in Science Education, 18(1), 53-85. DOI:10.1080/03057269008559981

Andrade, G. M. P. C., & Mozzer, N. B. (2016). Análise dos Questionamentos do Professor em Atividades Fundamentadas em Modelagem Analógica. Revista Brasileira de Pesquisa em Educação em Ciências, 16(3), 825-850.

Andrade, G. M. P. C., & Mozzer, N. B. (2017). Proposta de uma sequência didática sobre o uso de pesticidas fundamentada na modelagem analógica. In XI Encontro Nacional de Pesquisa em Educação em Ciências, Florianópolis, Brasil. Recuperado de http://www.abrapecnet.org.br/enpec/xi-enpec/anais/resumos/R0800-1.pdf

Aragón, M. M., Oliva, J. M., & Navarrete, A. (2014a). Contributions of learning through analogies to the construction of secondary education pupils' verbal discourse about chemical change. International Journal of Science Education, 36(12), 1960-1984. DOI:10.1080/09500693.2014.887237

Aragón, M. M., Oliva, J. M., & Navarrete, A. (2014b). Desarrollando la competencia de modelización mediante el uso y aplicación de analogías en torno al cambio químico. Enseñanza de las ciencias, 32(3), 337-356.

Barab, S. A., Hay, K. E., Barnett, M., & Keating, T. (2000). Virtual solar system project: building understanding through model building. Journal of Research in Science Teaching, 37(7), 719-756. DOI: 10.1002/1098-2736(200009)37:7<719::AID-TEA6>3.0.CO;2-V

Blanchette, I., & Dunbar, K. (2002). Representational change and analogy: how analogical inferences alter target representations. Journal of Experimental Psychology: Learning, Memory and Cognition, 28(4), 672-685. DOI:10.1037/0278-7393.28.4.672

Blanco-Anaya, P., Justi, R., & Díaz de Bustamante, J. (2017). Challenges and Opportunities in Analysing Students Modelling. International Journal of Science Education, 39(3), 377-402. DOI:10.1080/09500693.2017.1286408

Brown, D. E., & Clement, J. (1989). Overcoming misconceptions via analogical reasoning: abstract transfer versus explanatory model construction. Instructional Science, 18(4), 237-261. DOI:10.1007/BF00118013

Clement, J. (1989). Learning via model construction and criticism: Protocol evidence on sources of creativity in science. In Glover, J., Ronning, R., & Reynolds, C. (Orgs.), Handbook of Creativity: Assessment, Theory and Research (pp. 341-381). New York: Plenum.

Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041-1053. DOI:10.1080/095006900416901

Clement, J. (2008). Creative Model Construction in Scientists and Students: The role of imagery, analogy and mental simulations. Dordrecht: Springer.

Cohen, L., Manion, L., & Morrison, K. (2011). Research Methods in Education (Org.). London and New York: RoutledgeFalmer.

Coll, R. K. (2005). The role of models/and analogies in science education: Implications from research. International Journal of Science Education, 27(2), 183-198. DOI:10.1080/0950069042000276712

Dagher, Z. R. (1994). Does the use of analogies contribute to conceptual change? Science Education, 78(6), 601-614. DOI:10.1002/sce.3730780605

Davies, J., Nersessian, N. J., & Goel, A. K. (2005). Visual models in analogical problem solving. Foundations of Science, 10, 133-152. DOI:10.1007/s10699-005-3009-2

Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75(6), 649-672. DOI:10.1002/sce.3730750606

Duit, R., & Glynn, S. M. (1996). Mental modelling. In Welford, G., Osborne, J., & Scott, P. (Orgs.). Research in Science Education in Europe: Current issues and themes (pp. 166-176). London: Falmer.

Ebenezer, J. V., & Erickson, G. L. (1996). Chemistry students´ conceptions of solubility: a phenomenography. Science Education, 80(2), 181-201. DOI:10.1002/(SICI)1098-237X(199604)80:2<181::AID-SCE4>3.0.CO;2-C

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155-170.

Gentner, D. (1989). The mechanisms of analogical learning. In Vosniadou, S. & Ortony, A. (Orgs.). Similarity and Analogical Reasoning (pp. 199-241). Cambridge: Cambridge University Press.

Gentner, D., & Holyoak, K. J. (1997). Reasoning and learning by analogy. American Psychologist, 52(1), 32-34. DOI:10.1037/0003-066X.52.1.32

Giere, R. N. (1988). Explaining Science: A Cognitive Approach. Chicago and London: University of Chicago Press.

Gilbert, J., & Boulter, C. (1998). Learning science through models and modelling. In Fraser, B. J. & Tobin, K. G. (Orgs.). International Handbook of Science Education (pp. 53-66). Dordrecht: Kluwer.

Gilbert, J., & Justi, R. (2016). Modelling-based Teaching Science Education. Basel, Switzerland: Springer International Publishing.

Gilbert, J., Queiroz, A. S., & Justi, R. (2010). The use of a Model of Modelling to develop visualization during the learning of ionic bonding. In Tasar, M. F. & Çakmakci, G. (Orgs.). Contemporary Science Education Research: Internacional Prespectives (pp. 43-51). Ankara, Turkey: Pegem Akadem.

Glynn, S. M. (1991). Explaining science concepts: a teaching-with-analogies model. In Glynn, S. M., Yearny, R. H. & Britton, B. K. Orgs.). The Psychology of Learning Science (pp. 219-240). Hillsdale, N. J.: Lawrence Erlbaum.

Glynn, S. M., Britton, B. K., Semrud-Clikeman, M., & Muth, K. D. (1989). Analogical reasoning and problem solving in science textbooks. In Glover, J., Ronning, R., & Reynolds, C. (Orgs.). Handbook of Creativity: Assessment, Research and Theory (pp. 383-398). New York: Plenum Press.

Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in Science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822. DOI:10.1002/tea.3660280907

Haglund, J., & Jeppsson, F. (2012). Using Self-Generated Analogies in Teaching of Thermodynamics. Journal of Research in Science Teaching, 49(7), 898-921. DOI:10.1002/tea.21025

Harrison, A. G. (2008). Teaching with analogies: friends or foes? In Harrison, A. G. & Coll, R. K. (Orgs.). Using analogies in middle and secondary science classrooms: The FAR guide-an interesting way to teach with analogies. (pp. 6-21). California: Corwin.

Hesse, M. (1966). Models and Analogies in Science. Notre Dame, Indiana: University of Notre Dame Press.

Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by constraint satisfaction. Cognitive Science, 13, 295-355. DOI: 10.1207/s15516709cog1303_1

Johnson-Laird, P. N. (1983). Mental Models. Cambridge, MA: MIT Press.

Johnson-Laird, P. N. (1989). Analogy and the exercise of creativity. In S. Vosniadou & A. Ortony (Orgs.), Similarity and Analogical Reasoning (pp. 313-331). Cambridge: Cambridge University Press.

Johnstone, A. H. (1982). Macro-and microchemistry. The School Science Review, 64(227), 377-379.

Jonassen, D. (2008). Model building for conceptual change. In Vosniadou, S. (Org.). International Handbook of Research on Conceptual Change (pp. 676-693). New York and London: Routledge.

Justi, R., & Gilbert, J. (2002). Modelling, teachers' view on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387. DOI:10.1080/09500690110110142

Justi, R., & Gilbert, J. (2006). The role of analog models in the understanding of nature of models in chemistry. In Aubusson, P. J., Harrison, A. G,. & Ritchie, S. M., (Orgs.). Metaphor and Analogy in Science Education (pp. 119-130). Dordrecht: Springer.

Kind, V. (2004). Beyond Appearances: Students’ misconceptions about basic chemical ideas (Org.). London: Royal Society of Chemistry.

Knuuttila, T. (2005a). Models as epistemic artefacts: Toward a non-representationalist account of scientific representation. Helsinki, Finland: University of Helsinki.

Knuuttila, T. (2005b). Models, representation and mediation. Philosophy of Science, 72(5), 1260-1271. DOI:10.1086/508124

Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603-630. DOI:10.1080/09500690802538045

Mendonça, P. C. C., & Justi, R. (2010). Contributions of the Model of Modelling diagram to the learning of ionic bonding: analysis of a case study. Research in Science Education, 41(4), 479-503. DOI:10.1007/s11165-010-9176-3

Mendonça, P. C. C., Justi, R., & Oliveira, M. M. (2006). Analogias sobre ligações químicas elaboradas por alunos do ensino médio. Revista Brasileira de Pesquisa em Educação em Ciências, 6(1), 35-54.

Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In Morgan, M. S. & Morrison, M. (Orgs.). Models as mediators: Perspectives on natural and social science (pp. 10-37). Cambridge: Cambridge University Press.

Mozzer, N. B., & Justi, R. (2009). Introdução ao tema dissolução através da elaboração de analogias pelos alunos fundamentada na modelagem.In VII Encontro Nacional de Pesquisa em Ciências, Florianópolis, Brasil. Recuperado de posgrad.fae.ufmg.br/posgrad/viienpec/pdfs/216.pdf

Mozzer, N. B., & Justi, R. (2010). Concepções de alunos de ciências sobre estrutura atômica e ligação química expressas em suas comparações. In IV Colóquio Internacional de Educação e Contemporaneidade, Aracaju, Brasil. Recuperado de http://educonse.com.br/2010/eixo_05/E5-50.pdf

Mozzer, N. B., & Justi, R. (2012). Students' pre- and post-teaching analogical reasoning when they draw their analogies. International Journal of Science Education, 34(3), 429-458. DOI:10.1080/09500693.2011.593202

Mozzer, N. B., & Justi, R. (2015). Nem tudo que reluz é ouro: Uma discussão sobre analogias e outras similaridades e recursos utilizados no ensino de Ciências. Revista Brasileira de Pesquisa em Educação em Ciências, 15(1), 123-147.

Mozzer, N. B., Queiroz, A. S., & Justi, R. (2007). Proposta de ensino para introdução ao tema interações intermoleculares via modelagem. In VI Encontro Nacional de Pesquisa em Educação em Ciências (ENPEC), Florianópolis. Recuperado de www.nutes.ufrj.br/abrapec/vienpec/CR2/p186.pdf

Nersessian, N. J. (1992). How do Scientists Think? Capturing the Dynamics of Conceptual Change in Science. In Gierem, R. N. (Org.). Cognitive Models of Science (pp. 3-44). Minneapolis: University of Minnesota Press.

Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In Magnani, L., Nersessian, N. J., & Thagard, P. (Orgs.). Model-based Reasoning in Scientific Discovery (pp. 5-22). New York: Academic Plenum Publishers.

Nersessian, N. J. (2002a). The cognitive basis of model-based reasoning in science. In Carruthers, P., Stich, S., & Siegal, M. (Orgs.). The Cognitive Basis of Science (pp. 133-153): Cambridge University Press.

Nersessian, N. J. (2002b). Maxwell and 'the method of physical analogy: Model-based reasoning, generic abstraction and conceptual change. In Malamet, D. (Org.). Reading Phylosophy of Nature: Essays in the History and Philosophy of Science and Mathematics too Honor Howard Stien on this 70th birthday (pp. 129-166). Chicago and La Salle: Open Court.

Nersessian, N. J. (2008). Model-based reasoning practices: Historical exemplar. In Nersessian, N. J. (Org.). Creating Scientific Concepts (pp. 19-60). Cambridge: Massachusetts Institute of Technology.

Oliva, J. M. (2004). El pensamiento analógico desde la investigación educativa y desde la perspectiva del profesor de ciencias. Enseñanza de las ciencias, 3(3), 363-384.

Oliva, J. M., & Aragón, M. M. (2009). Contribución del aprendizaje con analogías al pensamiento modelizador de los alumnos en ciencias: marco teórico. Enseñanza de las ciencias, 27(2), 195-208.

Portides, D. P. (2011). Seeking representations of phenomena: Phenomenological models. Studies in History and Philosophy of Science, 42(2), 334-341. DOI:10.1016/j.shpsa.2010.11.041

Rattermann, M. J., & Gentner, D. (1998). More evidence for a relational shift in the development of analogy: children's performance on a causal-mapping task. Cognitive Development, 13, 453-478. DOI:10.1016/S0885-2014(98)90003-X

Roth, W. M. (1995). Authentic school science. Knowing and learning in open-inquiry science laboratories. Dordrecht: Kluwer.

Silva, T. A., & Mozzer, N. B. (2015). Conjugando modelagem e analogia no ensino de equilíbrio químico. Trabalho apresentado no X Encontro Nacional de Pesquisa em Educação em Ciências, Águas de Lindóia, Brasil.

Stake, R. (2000). Case studies. In Denzin, N. K. & Lincoln, Y. S. (Orgs.). The Handbook of Qualitative Research (pp. 435-454). Thousand Oaks, CA: Sage.

Thiele, R. B., & Treagust, D. F. (1991). Using analogies in secondary chemistry teaching. Australian Science Teachers Journal, 37, 10-14.

Treagust, D. F., Harrison, A. G., & Venville, G. J. (1998). Teaching science effectively with analogies: an approach for pre-service and in-service teacher education. Journal of Science Teacher Education, 9(1), 85-101. DOI:10.1023/A:1009423030880

Vosniadou, S. (1989). Analogical reasoning as a mechanism in knowledge acquisition: a developmental perspective. In Vosniadou, S. & Ortony, A. (Orgs.). Similarity and Analogical Reasoning (pp. 413-437). Cambridge: Cambridge University Press.

Wells, M., Hestenes, D., & Swackhamer, G. (1995). A MODELING METHOD for high school physics instruction. American Journal of Physics, 63(7), 606-619. DOI:10.1119/1.17849

Wilbers, J., & Duit, R. (2006). Post-festum and heuristic analogies. In Aubusson, P. J., Harrison, A. G., & Ritchie, S. M. (Orgs.). Metaphor and Analogy in Science Education (pp. 37-49). Dordrecht: Springer.

Wong, E. D. (1993). Understanding the generative capacity of analogies as a tool for explanation. Journal of Research in Science Teaching, 30(10), 1259-1272. DOI:10.1002/tea.3660301008

Downloads

Publicado

2018-04-30

Como Citar

Mozzer, N. B., & Justi, R. da S. (2018). MODELAGEM ANALÓGICA NO ENSINO DE CIÊNCIAS. Investigações Em Ensino De Ciências, 23(1), 155–182. https://doi.org/10.22600/1518-8795.ienci2018v23n1p155

Edição

Seção

Artigos