Laboratory stations as promoters of the mobilization of epistemic practices and metacognitive manifestations

Authors

DOI:

https://doi.org/10.22600/1518-8795.ienci2024v29n2p515

Keywords:

Epistemic practice, Metacognition, Laboratory stations, Inquiry based education

Abstract

In recent decades, studies on metacognition and epistemic practices have gained prominence in the field of ​​Science Education, as both are an integral and fundamental part of the learning process. However, probably because they stem from different sources (Cognitive Psychology and History and Philosophy of Science) and have a different nature (epistemic practices involve social interactions and metacognition is related to individual processes), the ideas were developed and consolidated independently. The present study analyzes the performance of 137 elementary school students, through the analysis of the students' answers in the laboratory forms and in an individual questionnaire, in a class on Forces and Newton's Laws, organized as laboratory stations. The results suggest that the collaborative laboratory stations model mobilizes the development of epistemic practices and presents evidence of the presence of metacognitive thinking. In this model, both epistemic practices and possible metacognitive manifestations take the form of arguments and of justification of ideas. Consequently, the development of epistemic practices reveals social, cognitive and metacognitive aspects. The implication of this research emphasizes the potential of laboratory stations for mobilizing epistemic practices and metacognitive manifestations.

References

Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82, 417-436. https://doi.org/10.1002/(SICI)1098-237X(199807)82:4%3c417::AID-SCE1%3e3.0.CO;2-E

Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2016). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching, 53(7), 1082-1112. https://doi.org/10.1002/tea.21257

Brown, A. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanisms. Metacognition, motivation, and understanding, In F. E. Weinert, & R. H. Kluwe, (Eds.). Metacognition, motivation and understanding. (pp. 65-116). Hillsdale, United States of America: Lawrence Erlbaum Associates.

Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268-291. https://doi.org/10.3102/0091732X07309371

Efklides, A. (2006). Metacognition and affect: What can metacognitive experiences tell us about the learning process?. Educational research review, 1(1), 3-14. https://doi.org/10.1016/j.edurev.2005.11.001

Efklides, A. (2008). Metacognition defining its facets and levels of functioning in relation to self-regulation and co-regulation. European Psychologist, 13(4), 277–287. https://doi.org/10.1027/1016-9040.13.4.277

Oliveira, T. E., Araujo, I. S., & Veit, E. A. (2016). Aprendizagem Baseada em Equipes (Team-Based Learning): um método ativo para o Ensino de Física. Caderno Brasileiro de Ensino de Física. 33. https://doi.org/10.5007/2175-7941.2016v33n3p962

Evagorou, M., Erduran, S., & Mäntylä, T. (2015). The role of visual representations in scientific practices: from conceptual understanding and knowledge generation to ‘seeing’ how science works. International Journal of STEM Education, 2(1), 1-13. https://doi.org/10.1186/s40594-015-0024-x

Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick (Ed.), The nature of intelligence (231-235). Hillsdale, United States of America: Erlbaum Associates.

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive developmental inquiry. American Psychologist, 34, 906-911. https://doi.org/10.1037/0003-066X.34.10.906

Flavell, J., & Wellman, H. M. (1977). Metamemory. In: R. V. Kalil, J. W. Hagen (Eds.) Perspectives on the development of memory and cognition. (pp. 3-33). Hillsdale, United States of America: Erlbaum Associates.

Hammer, D., Russ, R., Scherr, R. E., & Mikeska, J. (2008). Identifying inquiry and conceptualizing students’ abilities. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and application (pp. 138–156). Rotterdam, the Netherlands: SensePublishers.

Hofer, B. K. (2004). Exploring the dimensions of personal epistemology in differing classroom contexts: Student interpretations during the first year of college. Contemporary educational psychology, 29(2), 129-163. https://doi.org/10.1016/j.cedpsych.2004.01.002

Jiménez‐Aleixandre, M. P., Bugallo Rodríguez, A., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757-792. https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F

Jiménez-Aleixandre, M. P., & Crujeiras, B. (2017), Epistemic Practices and Scientific Practices in Science Education. In Taber, K., & Akpan, B. (Ed.). Science Education: An International Course Companion (69-80). Rotterdam: Sense Publishers.

Jost, J. T., Kruglanski, A. W., & Nelson, T. O. (1998). Social metacognition: an expansionist review. Personality & Social Psychology Review, 2(2), 137-154. https://doi.org/10.1207/s15327957pspr0202_6

Kelly, G. J. (2008). Inquiry, activity and epistemic practice. In R. A. Duschl, & R. E. Grandy (Eds.), Teaching Scientific Inquiry: recommendations for research and implementation (99-117). Rotterdam, Netherland: Sense Publishers. https://doi.org/10.1163/9789460911453_009

Kelly, G. J. (2022). Social epistemology as practically and interactionally accomplished, In K. Hazma, B. Jakobson, & I. Lundegard (Eds.), Nature, teaching of nature, and the nature of teaching: A Festschrift for Per-Olof Wickman (52-61). Stockholm: Stockholm University. Recuperada de

https://www.researchgate.net/publication/368592111_Social_Epistemology_as_Interactionally_and_Practically_Accomplished

Kelly, G. J. (2023). Qualitative research as culture and practice. In: Lederman, N. G., Zeideler, D. L., & Lederman, J. S. (Eds.) Handbook of Research on Science Education (60-86), New York, United States of America: Routledge. https://doi.org/10.4324/9780367855758-4

Kelly, G. J., & Licona, P. (2018). Epistemic Practices and Science Education. In Matthews, M. (Ed.), History, philosophy and science teaching: new research perspectives (139-165). Dordrecht, Netherland: Springer. https://doi.org/10.1007/978-3-319-62616-1_5

Kelly, G. J., McDonald, S., & Wickman, P. O. (2012). Science learning and epistemology. In Fraser, B. J., Tobin, K. G., & McRobbie, C. J. (Eds.), Second International Handbook of Science Education (281-291). Dordrecht, Netherland:: Springer. https://doi.org/10.1007/978-1-4020-9041-7_20

Knorr-Cetina, K. (1999). Epistemic cultures: How the sciences make knowledge. Cambridge, United States of America: Harvard University Press.

Knorr-Cetina, K. (2001). Objectual Practice. In K. Knorr-Cetina,T. R. Schatzki, T. R., & E. Von Savigny, (Eds.), The practice turn in contemporary theory (175-188). London, England: Routledge. https://doi.org/10.4324/9780203977453-22

Lee, S., Kang, E., & Kim, H. B. (2015). Exploring the impact of students’ learning approach on collaborative group modeling of blood circulation. Journal of Science Education and Technology, 24, 234-255. https://doi.org/10.1007/s10956-014-9509-5

Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy. In W. Damon, R. Lerner, K. A. Renninger, & I. E. Sigel (Eds.), Handbook of child psychology: child psychology in practice (153-196). Wiley.New York, United States of America: John Wiley & Sons Inc. Recuperada de https://www-leland.stanford.edu/~hakuta/Courses/Cognitive%20Development/Lehrer%20and%20Schauble.pdf

Lindfors, M., Bodin, M., & Simon, S. (2020). Unpacking students’ epistemic cognition in a physics problem‐solving environment. Journal of Research in Science Teaching, 57(5), 695-732. https://doi.org/10.1002/tea.21606

Liskala, T., Vauras, M., & Lehtinen, E. (2004). Socially-shared metacognition in peer learning? Hellenic Journal of Psychology, 1(2), 147-178. Recuperada de https://www.researchgate.net/publication/284553965_Socially-shared_metacognition_in_peer_learning

Longino, H. E. (1990). Science as social knowledge: Values and objectivity in scientific inquiry. Princeton, United States of America: Princeton University Press.

Longino, H. E. (2002). The fate of knowledge. Princeton, United States of America: Princeton University Press.

Lynch, M. (2006). The production of scientific images: vision and re-vision in the history, philosophy, and sociology of science. In L. Pauwels (Ed.), Visual cultures of science: rethinking representational practices in knowledge building and science communication (26-40). Lebanon, United States of America: Darthmouth College Press.

Michaelsen, L. K., Sweet, M., & Parmelee, D. X. (2008) (Org.). Team-Based Learning: Small-group learning’s next big step. New Directions in Teaching and Learning. San Francisco, United States of America: Jossey-Bass.

Mota, A. R., Lopes, J. M., & Lopes dos Santos, J. M. (2013). Estações laboratoriais: uma aposta no ensino experimental. Gazeta da Física, 36(1), 25-28. Recuperada de https://www.spf.pt/magazines/GFIS/111/article/895/pdf

Mota, A. R. L., & Santos, J. B. L. (2018). Investigating students' conceptual change about colour in an innovative research-based teaching sequence. Investigações em Ensino de Ciências, 23(1), 95-110. https://doi.org/10.22600/1518-8795.ienci2018v23n1p95

Mota, A. R., Silva, F., & Sasseron, L. H. (2023a). Podem as práticas epistêmicas contribuir para o desenvolvimento de competências metacognitivas?. Revista Espaço Pedagógico, 30, e14897. https://doi.org/10.5335/rep.v30i0.14897

Mota, A. R. L., Santos, J. L., & Rosa, C. T. W. (2023b). Aprender circuitos elétricos com estações laboratoriais para desenvolver competências metacognitivas. A Física na Escola, 21, 220808-1. https://doi.org/10.59727/fne.v21i1.58

Nashon, S. M., & Anderson, D. (2004). Obsession with ‘g’: A metacognitive reflection of a laboratory episode. Alberta Journal of Science Education, 36(2), 39-44.

Nora, P. dos S., Broietti, F. C. D., & Corrêa, N. N. G. (2021). A Autoavaliação como Processo de Metacognição na Aprendizagem de Química. Revista Debates em Ensino de Química, 7(3), 196–213. https://doi.org/10.53003/redequim.v7i3.3347

Osborne, J., Pimentel, D., Alberts, B., Allchin, D., Barzilai, S., Bergstrom, C., Coffey, J., Donovan, B., Kivinen, K., Kozyreva. A., & Wineburg, S. (2022). Science Education in an Age of Misinformation. Stanford, United States of America: Stanford University. Recuperada de

https://sciedandmisinfo.stanford.edu/sites/g/files/sbiybj25316/files/media/file/educacao-em-ciencias-em-tempos-de-desinformacao1.pdf

Pereira, M. M., & de Andrade, V. A. (2012). Autoavaliação como estratégia para o desenvolvimento da metacognição em aulas de Ciências. Investigações em Ensino de Ciências, 17(3), 663–674. Recuperada de https://ienci.if.ufrgs.br/index.php/ienci/article/view/180

Perini, L. T. (2002). Visual representations and scientific knowledge. (PhD Thesis). University of California, USA.

Perini, L. (2005a). The truth in pictures. Philosophy of Science, 72(1), 262-285. https://doi.org/10.1086/426852

Perini, L., (2005b). Visual representations and confirmation. Philosophy of Science, 72(5), 913-926. https://doi.org/10.1086/508949

Pickering, A. (1995). The Mangle of Practice: Time, Agency, and Science. Chicago, United States of America: The University of Chicago Press.

Rosa, C. T. W. (2011). A metacognição e as atividades experimentais no ensino de Física. (Tese de Doutorado). Universidade Federal de Santa Catarina, Florianópolis, SC. Recuperada de https://repositorio.ufsc.br/xmlui/handle/123456789/95261

Salonen, P., Vauras, M., & Efklides, A. (2005). Social interaction-what can it tell us about metacognition and coregulation in learning? European Psychologist, 10(3), 199-208. https://doi.org/10.1027/1016-9040.10.3.199

Sasseron, L. H., & Duschl, R. A. (2016). Ensino de Ciências e as práticas epistêmicas: o papel do professor e o engajamento dos estudantes. Investigações em Ensino de Ciências, 21(2), 52-67. https://doi.org/10.22600/1518-8795.ienci2016v21n2p52

Sasseron, L. H. (2021). Práticas constituintes de investigação planejada por estudantes em aula de ciências: análise de uma situação. Ensaio Pesquisa em Educação em Ciências, 23, e26063. https://doi.org/10.1590/1983-21172021230101

Silva, M. B. (2015). Construção de inscrições e seu uso no processo argumentativo em uma atividade investigativa de biologia. (Tese de Doutorado). Universidade de São Paulo, São Paulo, SP. Recuperada de https://www.teses.usp.br/teses/disponiveis/48/48134/tde-20052015-100507/pt-br.php

Silva, F. C., Nascimento, L. A., Valois, R. S., & Sasseron, L. H. (2022). Ensino de Ciências como Prática Social: relações entre as normas sociais e os domínios do conhecimento. Investigações em Ensino de Ciências, 27(1), 39-51. https://doi.org/10.22600/1518-8795.ienci2022v27n1p39

Silva, E. P. C., & Silva, F. C. (2022). Da simulação computacional ao uso das representações visuais: desenvolvendo práticas epistêmicas em aulas de Química. Educação, 47, e03-1. https://doi.org/10.5902/1984644444488

Sinatra, G. M., & Chinn, C. A. (2011). Thinking and reasoning in science: Promoting epistemic conceptual

change. In K. Harris, C. B. McCormick, G. M. Sinatra, & J. Sweller (Eds.), APA educational psychology handbook series: Critical theories and models of learning and development relevant to learning

and teaching (257-282). Washington, United States of America: APA Publications.

Stroupe, D. (2014). Examining classroom science practice communities: How teachers and students negotiate epistemic agency and learn science‐as‐practice. Science Education, 98(3), 487-516. https://doi.org/10.1002/sce.21112

Taasoobshirazi, G., & Farley, J. A. (2013). Multivariate Model of Physics Problem Solving. Learning and Individual Differences, 24, 53-62. https://doi.org/10.1016/j.lindif.2012.05.001

Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and Learning: Conceptual and Methodological Considerations. Metacognition and Learning, 1, 3-14. https://doi.org/10.1007/s11409-006-6893-0

Yin, R. K. (2001). Estudo de Caso: Planejamento e métodos. Porto Alegre, RS: Editora Bookman.

Zheng, X-L., Gu, X-Y., Lai, W-H., Hwang, G-J., & Wang, F. (2023). Development of the social metacognition inventory for online collaborative argumentation: construct validity and reliability. Educational Technology Research and Development, 71, 949-971. https://doi.org/10.1007/s11423-023-10220-5

Zohar, A., & Barzilai, S. (2013). A review of research on metacognition in science education: current and future directions. Studies in Science Education, 49(2), 121-169. https://doi.org/10.1080/03057267.2013.847261

Published

2024-09-10

How to Cite

Mota, A. R., Silva, F. C., Werner da Rosa, C. T., & Sasseron, L. H. (2024). Laboratory stations as promoters of the mobilization of epistemic practices and metacognitive manifestations. Investigations in Science Education, 29(2), 515-538. https://doi.org/10.22600/1518-8795.ienci2024v29n2p515