High school students' understanding of sample size and reproducibility in experimental data
DOI:
https://doi.org/10.22600/1518-8795.ienci2024v29n2p564Keywords:
Measurement, Data analysis., Practical activities, Reproducibility, LaboratoryAbstract
This study investigates the perceptions of high school students regarding the concepts of evidence related to the reproducibility of experimental data, also in addition to analyzing the evolution of these concepts over a school year, considering the implementation of a series of diverse practical activities integrated into the school curriculum. In total, 164 first-year high school students fully participated in the research, based on a quantitative approach covering a pre-experimental design with two tests, one at the beginning and another at the end of the school year. In addition to the tests, some students were interviewed. The comparison of the pre- and post-test results indicates, for the group of students surveyed, that there was a certain sophistication in thinking about the constructs researched. However, the analysis of the justifications revealed that a large portion of the participants did not understand the real reasons of the importance of working with a larger number of measurements properly. Based on the results, educational implications are discussed, and new research questions are proposed.References
Agresti, A. (2013). Categorical data analysis. (3rd Ed.). Hoboken, United States of America: John Wiley & Sons.
Allie, S., Buffler, A., Campbell, B., & Lubben, F. (1998). First‐year physics students’ perceptions of the quality of experimental measurements. International Journal of Science Education, 20(4), 447-459. https://doi.org/10.1080/0950069980200405
ANPEd - Associação Nacional de Pós-Graduação e Pesquisa em Educação. (2019). Ética e pesquisa em Educação: subsídios. Rio de Janeiro, RJ: ANPEd.
Borges, A. T. (2002). Novos rumos para o laboratório escolar de ciências. Caderno Brasileiro de Ensino de Física, 19(3), 291-313. Disponível em https://periodicos.ufsc.br/index.php/fisica/article/view/6607
Buffler, A., Allie, S., & Lubben, F. (2001). The development of first year physics students' ideas about measurement in terms of point and set paradigms. International Journal of Science Education, 23(11), 1137-1156. https://doi.org/10.1080/09500690110039567
Camargo Filho, P. S. D., Laburú, C. E., & Barros, M. A. D. (2015). Para além dos paradigmas da medição. Ciência & Educação (Bauru), 21(4), 817-834. https://doi.org/10.1590/1516-731320150040003
Coelho, S. M., & Séré, M. G. (1998). Pupils’ reasoning and practice during hands‐on activities in the measurement phase. Research in Science & Technological Education, 16(1), 79-96. https://doi.org/10.1080/0263514980160107
Duschl, R. A. (2008). Science education in 3 part harmony: Balancing conceptual, epistemic and social goals. Review of Research in Education, 32, 268-291. https://doi.org/10.3102/0091732X07309371
Gaya, T. F. M., & Bruel, A. L. (2019). Estudos longitudinais em educação no Brasil: revisão de literatura da abordagem metodológica e utilização de dados educacionais para pesquisas em Educação. Revista de Estudios Teóricos y Epistemológicos en Política Educativa, 4, 1-18. https://doi.org/10.5212/retepe.v.4.015
Gott, R., & Duggan, S. (1995). Investigative Work in the Science Curriculum. Buckingham, United Kingdom: Open University Press.
Gräber, W., Nentwig, P., Koballa, T. R., & Evans, R. H. (Eds.). (2013). Scientific literacy: der Beitrag der Naturwissenschaften zur allgemeinen Bildung. Berlin: Springer-Verlag.
Hart, C., Mulhall, P., Berry, A., Loughran, J., & Gunstone, R. (2000). What is the purpose of this experiment? Or can students learn something from doing experiments? Journal of Research in Science Teaching, 37(7), 655-675. https://doi.org/10.1002/1098-2736(200009)37:7<655::AID-TEA3>3.0.CO;2-E
Kok, K., & Priemer, B. (2023). Assessment tool to understand how students justify their decisions in data comparison problems. Physical Review Physics Education Research, 19(2), 020141. https://doi.org/10.1103/PhysRevPhysEducRes.19.020141
Kranz, J., Baur, A., & Möller, A. (2023). Learners’ challenges in understanding and performing experiments: a systematic review of the literature. Studies in Science Education, 59(2), 321-367. https://doi.org/10.1080/03057267.2022.2138151
Kuhn, D., Arvidsson, T. S., Lesperance, R., & Corprew, R. (2017). Can engaging in science practices promote deep understanding of them? Science Education, 101(2), 232-250. https://doi.org/10.1002/sce.21263
Kung, R. L., & Linder, C. (2006). University students’ ideas about data processing and data comparison in a physics laboratory course. Nordic studies in science education, 2(2), 40-53. https://doi.org/10.5617/nordina.423
Laburú, C. E., & Barros, M. A. (2009). Problemas com a compreensão de estudantes em medição: razões para a formação do paradigma pontual. Investigações em Ensino de Ciências, 14(2), 151-162. Recuperado de https://ienci.if.ufrgs.br/index.php/ienci/article/view/353
Lu, C., Liu, Y., Xu, S., Zhou, S., Mei, H., Zhang, X., ... & Bao, L. (2023). Conceptual framework assessment of knowledge integration in student learning of measurement uncertainty. Physical Review Physics Education Research, 19(2), 020145. https://doi.org/10.1103/PhysRevPhysEducRes.19.020145
Lubben, F., & Millar, R. (1996). Children's ideas about the reliability of experimental data. International Journal of Science Education, 18(8), 955-968. https://doi.org/10.1080/0950069960180807
Lubben, F., Allie, S., & Buffler, A. (2010). Experimental work in science. In M. Rollnick (Ed.). Identifying Potential for Equitable Access to Tertiary Level Science (pp.135-152). Berlin, Germany: Springer-Verlag.
Lubben, F., Campbell, B., Buffler, A., & Allie, S. (2001). Point and set reasoning in practical science measurement by entering university freshmen. Science Education, 85(4), 311-327. https://doi.org/10.1002/sce.1012
Millar, R., Lubben, F., Got, R., & Duggan, S. (1994). Investigating in the school science laboratory: conceptual and procedural knowledge and their influence on performance. Research Papers in Education, 9(2), 207-248. https://doi.org/10.1080/0267152940090205
MEC - Ministério da Educação (2018). Base Nacional Comum Curricular. Recuperado de http://basenacionalcomum.mec.gov.br
Moreira, M. A. (2011). Metodologias de pesquisa em ensino. São Paulo, SP: Livraria da Física.
NRC - National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, United States of America: National Academies Press. Recuperado de https://nap.nationalacademies.org/catalog/13165/a-framework-for-k-12-science-education-practices-crosscutting-concepts
NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, United States of America: National Academies Press. Recuperado de https://nap.nationalacademies.org/catalog/18290/next-generation-science-standards-for-states-by-states
OCDE. PISA 2018 assessment and analytical framework. Paris: OECD publishing, 2019. Recuperado de https://www.oecd.org/education/pisa-2018-assessment-and-analytical-framework-b25efab8-en.htm
Osborne, J. (2016). Defining a knowledge base for reasoning in science: The role of Procedural and Epistemic knowledge. In R. A. Duschl, & A. S. Bismack (Eds.). Reconceptualizing STEM education: The central role of practices (pp. 215-231). London, United Kingdom: Routledge.
Pigosso, L. T., & Heidemann, L. A. (2023). Uma revisão da literatura sobre a abordagem do processo de medição científica no ensino de Física na Educação Básica. Investigações em Ensino de Ciências, 28(2), 332–351. https://doi.org/10.22600/1518-8795.ienci2023v28n2p332
Pollard, B., Werth, A., Hobbs, R., & Lewandowski, H. J. (2020). Impact of a course transformation on students’ reasoning about measurement uncertainty. Physical Review Physics Education Research, 16(2), 020160. https://doi.org/10.1103/PhysRevPhysEducRes.16.020160
Pols, C. F. J., Dekkers, P. J. J. M., & de Vries, M. J. (2022). Defining and assessing understandings of evidence with the assessment rubric for physics inquiry: Towards integration of argumentation and inquiry. Physical Review Physics Education Research, 18(1), 010111. https://doi.org/10.1103/PhysRevPhysEducRes.18.010111
Rollnick, M., Dlamini, B., Lotz, S., & Lubben, F. (2001). Views of South African chemistry students in university bridging programs on the reliability of experimental data. Research in Science Education, 31, 553-573. https://doi.org/10.1023/A:1013102108541
Rollnick, M., Lubben, F., Lotz, S., & Dlamini, B. (2002). What do underprepared students learn about measurement from introductory laboratory work? Research in Science Education, 32, 1-18. https://doi.org/10.1023/A:1015022804590
Sasseron, L. H., & Carvalho, A. M. P. (2011). Alfabetização científica: uma revisão bibliográfica. Investigações em Ensino de Ciências, 16(1), 59-77. Recuperado de: https://ienci.if.ufrgs.br/index.php/ienci/article/view/246
Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32(1), 102. https://doi.org/10.1037/0012-1649.32.1.102
Sekretariat der Ständigen Konferenz der Kultusminister der Länder der Bundesrepublik Deutschland (KMK). (2020). Bildungsstandards im Fach Physik für die Allgemeine Hochschulreife. Berlin, Deutschland: KMK. Recuperado de https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2020/2020_06_18-BildungsstandardsAHR_Physik.pdf
Séré, M. G., Journeaux, R., & Larcher, C. (1993). Learning the statistical analysis of measurement errors. International Journal of Science Education, 15(4), 427-438. https://doi.org/10.1080/0950069930150406
Varelas, M. (1997). Third and fourth graders' conceptions of repeated trials and best representatives in science experiments. Journal of Research in Science Teaching, 34(9), 853-872. https://doi.org/10.1002/(SICI)1098-2736(199711)34:9<853::AID-TEA2>3.0.CO;2-T
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Alessandro Damásio Trani Gomes

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
IENCI is an Open Access journal, which does not have to pay any charges either for the submission or processing of articles. The journal has adopted the definition of the Budapest Open Access Initiative (BOAI), which states that the users have the right to read, write down, copy, distribute, print, conduct searches and make direct links with the complete texts of the published articles.
The author responsible for the submission represents all the authors of the work and when the article is sent to the journal, guarantees that he has the permission of his/her co-authors to do so. In the same way, he/she provides an assurance that the article does not infringe authors´ rights and that there are no signs of plagiarism in the work. The journal is not responsible for any opinions that are expressed.
All the articles are published with a Creative Commons License Attribution Non-commercial 4.0 International. The authors hold the copyright of their works and must be contacted directly if there is any commercial interest in the use of their works.