Cognitive-epistemological obstacles and explanatory models in the study on the structure of matters in physical classes

Authors

  • Márlon Pessanha Departamento de Metodologia de Ensino / Universidade Federal de São Carlos

DOI:

https://doi.org/10.22600/1518-8795.ienci2018v23n2p383

Keywords:

epistemological obstacles, cognitive-epistemological obstacles, mental and conceptual models, modern and contemporary physics, structure of matter

Abstract

The knowledge involved in Modern and Contemporary Physics breaks not only with forms of thinking proper to common-sense knowledge, but also with forms of thinking typical of classical science. Thus, the discussion about their teaching and learning in High School goes through the understanding about how ways of thinking and building knowledge affects the elaboration of explanatory models. In this research, based on Bachelard's notions of rupture and epistemological obstacle, and in an approach to studies on mental and conceptual models, we seek to understand how cognitive-epistemological obstacles act in the construction of explanatory models about the structure of matter. For that, physics classes were recorded in two contexts, Catalan secondary education in Spain, and high school in São Paulo. From a qualitative and interpretive analysis it was possible to identify cognitive-epistemological obstacles related to the naive perception of everyday phenomena, using metaphors and images, and with a limited and incongruent reasoning. As we have seen, these obstacles made it difficult to construct mental models that approached the target conceptual model. We believe that the analyzes and conclusions presented in this paper contribute to a necessary discussion about the role of cognitive-epistemological obstacles in the learning of concepts involved in Modern and Contemporary Physics.

References

Adúriz-Bravo, A. (2013). A "Semantic" View of Scientific Models for Science Education. Science & Education, 22(7), 1593-1611. DOI: 10.1007/s11191-011-9431-7

Bachelard, G. (1977). O racionalismo aplicado. Rio de Janeiro, Brasil: Zahar Editores.

Bachelard, G. (1996). A formação do espírito científico: contribuição para uma psicanálise do conhecimento. Rio de Janeiro, Brasil: Contraponto.

Bachelard, G. (2004). Ensaio sobre o conhecimento aproximado. Rio de Janeiro, Brasil: Contraponto.

Barcelos, M. & Guerra, A. (2015) Inovação curricular e Física Moderna: da prescrição à prática. Revista Ensaio, 17(2), 329-350. 10.1590/1983-21172015170203

Brousseau, G. (1997). La théorie des situations didactiques, Recuperado de https://math.unipa.it/~grim/brousseau_montreal_03.pdf

Clement, J. J. (2000) Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041-1053. DOI: 10.1080/095006900416901

Coll, R. K., France, B. & Taylor, I. (2005). The role of models/and analogies in science education: implications from research. International Journal of Science Education, 27(2), 183-198. DOI: 10.1080/0950069042000276712

Cornu, B. (1991). Limits. In: TALL, D. O. (Ed.), Advanced mathematical thinking. Dordrecht, Holanda: Kluwer Academic Publishers, 153-166.

Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5-8. DOI: 10.3102/0013189X032001005

Fischler, H. & Lichtfeldt, M. (1992) Modern Physics and Students’ Conceptions, Journal of Science Education, London, 14(2), 181-190. DOI: 10.1080/0950069920140206

Freire Jr, O., Carvalho Neto, R. A., Rocha, J. F. M., Vasconcelos, M.,J. L., Socorro, M. & Anjos, E. L. (1995). Introducing Quantum Physics in Secondary School. Proceedings of Third International History, Philosophy and Science Teaching Conference, Minneapolis, 1, 412-419.

Friese, S. (2011). ATLAS.ti 6 Tour Rápido, Berlim, Alemanha: ATLAS.ti Scientific Software Development GmbH.

Fuchs, H. U. (2015). From Stories to Scientific Models and Back: Narrative Framing in Modern Macroscopic Physics. International Journal of Science Education, 37(5-6), 934-957. DOI: 10.1080/09500693.2015.1025311

Gauch, H. (2009) Responses and Clarifications regarding Science and Worldviews. Science and Education, 18(6), 905–927. DOI: 10.1007/s11191-007-9133-3

Gil, D. P., Senent, F. & Solbes, J. (1988) Análisis critico de la introducción de la física moderna en la enseñanza media. Revista de Enseñanza de la Física, 2(1), 16-21. Recuperado de https://revistas.unc.edu.ar/index.php/revistaEF/article/view/15990/15814

Gil, D. P. & Solbes, J. (1993). The Introduction of Modern Physics: overcoming a deformed vision of science. International Journal of Science Education, 15(3), 255-26. DOI: 10.1080/0950069930150303

Greca, I. M. & Moreira, M. A. (2000). Mental models, conceptual models, and modeling. International Journal of Science Education, 22(1), 1-11. DOI: 10.1080/095006900289976

Herscovics, N. (1989). Cognitive obstacles encountered in the learning of Algebra. In: Wagner, S. & Kieran, C. (Eds.), Research issues in the learning and teaching of algebra, 4, 60-86, New York, EUA: CRC Press.

Johnson-Laird, P. N. (1983). Mental models: Toward a cognitive science of language, inference and consciousness. Cambridge, Inglaterra: Cambridge University Press.

Johnson-Laird, P. N. (2010). Mental models and human reasoning. Proceedings of the National Academy of Sciences, 107(43), 18243-18250. DOI: 10.1073/pnas.1012933107

Kennedy-Clark, S. (2013). Research by Design: Design-Based Research and the Higher Degree Research student. Journal of Learning Design, 6(2), 26-32. DOI: 10.5204/jld.v6i2.128

Moutinho, S., Moura, R. & Vasconcelos, C. (2016) Mental Models about Seismic Effects: Students' Profile Based Comparative Analysis. International Journal of Science and Mathematics Education, 14(3), 391-415. DOI: 10.1007/s10763-014-9572-7

Pessanha, M. & Pietrocola, M. (2016). O ensino de estrutura da matéria e aceleradores de partículas: uma pesquisa baseada em design. Revista Brasileira de Pesquisa em Educação em Ciências, 16(2), 361-388. Recuperado de https://seer.ufmg.br/index.php/rbpec/article/view/2721/2210.

Pessanha, M. & Pietrocola, M. (2017). Particle Accelerators and Didactic Obstacles: A Teaching and Learning Experience in São Paulo and Cataluña. In PIETROCOLA, M., GURGEL, I. (Eds.) Crossing the Border of the Traditional Science Curriculum: Innovative Teaching and Learning in Basic Science Education (pp. 45-59). Rotterdam, Holanda: Sense Publishers.

Rodrigues, R. & Carvalho, P. S. (2014). Using computational simulations to confront students' mental models. Physics Education, 49(2), 195-200. DOI: 10.1088/0031-9120/49/2/195

Santos, W. M. S., Luiz, A. M. & Carvalho, C. R. (2009) A proposal to introduce a topic of contemporary physics into high-school teaching. Physics Education, 44(5), 511-516. DOI: 10.1088/0031-9120/44/5/011

Stannard, R. (1990) Modern Physics For The Young. Physics Education, 25(3), 132-143.

Tall, D. (1989). Different cognitive obstacles in a technological paradigm or A reaction to: “Cognitive obstacles encountered in the learning of Algebra”. In Wagner, S. & Kieran, C. (Eds.), Research issues in the learning and teaching of algebra, 4, 87-92, New York, EUA: CRC Press.

The King's Centre for Visualization in Science (2010a). Up Close Rutherford Scattering. Recuperado de: http://www.kcvs.ca/site/projects/physics_files/rutherford/scattering2.swf

The King's Centre for Visualization in Science (2010b). Rutherford Scattering. Recuperado de: http://www.kcvs.ca/site/projects/physics_files/rutherford/historical_scattering2.swf

Treagust, D. & Duit, R. (2008). Compatibility between Cultural Studies and Conceptual Change in Science Education: There Is More to Acknowledge than to Fight Straw Men! Cultural Studies of Science Education, 3(2), 387-395. DOI: 10.1007/s11422-008-9096-y

Wilson, B. (1992). Particle physics at A-level-a teacher’s viewpoint. Physics Education, 27(2), 64-65.

Published

2018-08-30

How to Cite

Pessanha, M. (2018). Cognitive-epistemological obstacles and explanatory models in the study on the structure of matters in physical classes. Investigations in Science Education, 23(2), 383–405. https://doi.org/10.22600/1518-8795.ienci2018v23n2p383