The Inference to the Best Explanation as heuristic to address historical episodes in Science Education through explanatory controversies

Authors

  • Renato Felix Rodrigues Doutorando em Ensino de Física no programa de Pós-Graduação em Ensino de Física da Universidade Federal do Rio Grande do Sul.
  • Alexsandro Pereira de Pereira Programa de Pós-Graduação em Ensino de Física (Egresso) Universidade Federal do Rio Grande do Sul – UFRGS Porto Alegre, Rio Grande do Sul, Brasil

DOI:

https://doi.org/10.22600/1518-8795.ienci2020v25n3p557

Keywords:

Inference to the Best Explanation, Nature of Science, History of Science, Philosophy of Science

Abstract

This paper presents the Inference to the Best Explanation (IBE) to approach aspects of Nature of Science through historical explanatory controversies. The Inference to the Best Explanation is a topic of discussion in epistemology that addresses the justification and rationality of knowledge. Its focus is the study of the conditions that led an explanation to be considered superior than its competitors in a specific context. In this paper, this perspective is adapted to analyze the conflict between scientific explanations at specific times of history of science. The focus is to problematize the epistemic and cultural foundations that supported the defense of explanations proposed throughout the course of the historical episode under discussion. One of the goals is that this discussion can be made in contexts such as secondary education and teachers training, in order to avoid extreme positions in the opposition between structuralist and relativist conceptions of science. For this, some key concepts of the IBE are presented, followed by a proposal of how to adapt them to educational context. As an illustration, this perspective is employed in the historical episode of the photoelectric effect explanation, during the early decades of the 20th century. On the episode are addressed issues such as: the role of the scientific community in the evaluation of scientific knowledge, the indeterminacy of scientific theories by the available evidence, and the influence of personal interests in the evaluation of scientific theories.

References

Abd-El-Khalick, F. (2013). Teaching with and about Nature of Science, and Science Teacher Knowledge Domains. Science and Education, 22(9), 2087–2107. https://doi.org/10.1007/s11191-012-9520-2

Abd-El-Khalick, F., & Lederman, N. (2000). The influence of history of science courses on students’ conceptions of the nature of science. Journal of Research in Science Teaching, 37(10), 1057–1095. https://doi.org/10.1002/1098-2736(200012)37:10<1057::AID-TEA3>3.0.CO;2-C

Acevedo, J. A., Vázquez, A., Paixão, M. F., Acevedo, P., Oliva, J. M., & Manassero, M. A. (2005). Mitos da didática das ciências acerca dos motivos para incluir a natureza da ciência no ensino das ciências. Ciência & Educação (Bauru), 11(1), 1–15. https://doi.org/10.1590/S1516-73132005000100001

Achinstein, P. (2001). The book of evidence. Oxford, United Kingdom: Oxford University Press.

Alameh, S., & Abd-El-Khalick, F. (2018). Towards a Philosophically Guided Schema for Studying Scientific Explanation in Science Education. Science and Education, 27(9–10), 831–861. https://doi.org/10.1007/s11191-018-0021-9

Alters, B. J. (1997). Whose Nature of Science? Journal of Research in Science Teaching, 34(1), 39–55. https://doi.org/10.1002/(SICI)1098-2736(199701)34:1<39::AID-TEA4>3.0.CO;2-P

Bagdonas, A., Zanetic, J., & Gurgel, I. (2014). Controvérsias sobre a natureza da ciência como enfoque curricular para o ensino da física: o ensino de história da cosmologia por meio de um jogo didático. Revista Brasileira de História da Ciência, 7(2), 242–260.

Batista, C. A. dos S., & Peduzzi, L. O. Q. (2019). Concepções epistemológicas de Larry Laudan: uma ampla revisão bibliográfica nos principais periódicos brasileiros do ensino de ciências e ensino de física. Investigações em Ensino de Ciências, 24(2), 38–55. https://doi.org/10.22600/1518-8795.ienci2019v24n2p38

Batista, G. L. de F., & Drummond, J. M. H. F. (2015). Fontes primárias no ensino de física: considerações e exemplos de propostas. Caderno Brasileiro de Ensino de Física, 32(3), 663–702. https://doi.org/10.1377/hlthaff.2013.0625

Bhakthavatsalam, S. (2019). The Value of False Theories in Science Education. Science and Education, 28(1–2), 5–23. https://doi.org/10.1007/s11191-019-00028-2

Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science and Education, 95(4), 639–669. https://doi.org/10.1002/sce.20449

Brewer, W. F., Chinn, C. A., & Samarapungavan, A. (2000). Explanation in scientists and children. In F. C. Keil & R. A. Wilson (Orgs.), Explanation and cognition (pp. 119–136). Cambridge, United States of America: MIT Press.

Burke, P. (2005). O que é história cultural? Rio de Janeiro, RJ: Zahar.

Casali, J. P., & Gonçalves, J. P. (2018). Pós-estruturalismo: algumas considerações sobre esse movimento do pensamento. Revista Espaço de Diálogo e Desconexão, 10(2), 84–92. https://doi.org/10.32760/1984-1736/redd/2018.v10i2.11344

Chalmers, A. F. (1993). O que é Ciência a final? São Paulo, SP: Editora Brasiliense.

Clough, M. P. (2011). The Story Behind the Science: Bringing Science and Scientists to Life in Post-Secondary Science Education. Science and Education, 20(7), 701–717. https://doi.org/10.1007/s11191-010-9310-7

Damasio, F., & Peduzzi, L. O. Q. (2015). O pior inimigo da Ciência: Procurando esclarecer questões polêmicas da epistemologia de Paul Feyerabend na Formação de Professores. Investigações Em Ensino de Ciências, 20(1), 97. https://doi.org/10.22600/1518-8795.ienci2016v20n1p97

Dascal, M. (1979). Conversational Relevance. In A. Margalit (Org.), Meaning and Use (pp. 153–174). Dordrecht, Holanda: Reidel.

Day, T., & Kincaid, H. (1994). Putting Inference to the Best Explanation in its place. Synthese, 98(2), 271–295. https://doi.org/10.1007/BF01063944

Douven, I. (2017). Abduction. In The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retirado de: https://plato.stanford.edu/archives/sum2017/entries/abduction/

Duarte, T. R. (2005). O fracasso do Programa Forte de Sociologia. Revista Três Pontos, 2(1), 13–18.

Duhem, P. M. M. (1991). The aim and structure of physical theory (Vol. 13). Princeton, United States of America: Princeton University Press.

Duschl, R. A., & Grandy, R. (2013). Two views about explicitly teaching Nature of Science. Science and Education, 22(9), 2109–2139. https://doi.org/10.1007/s11191-012-9539-4

Eflin, J. T., Glennan, S., & Reisch, G. (1999). The nature of science: A perspective from the philosophy of science. Journal of Research in Science Teaching, 36(1), 107–116. https://doi.org/10.1002/(sici)1098-2736(199901)36:1<107::aid-tea7>3.0.co;2-3

El-Hani, C. N. (2007). Notas sobre o ensino de História e Filosofia da Ciência na educação científica de nível superior. A Pesquisa Em Ensino de Ciências No Brasil, 1, 293–315.

Feyerabend, P. (1977). Contra o Método. Rio de Janeiro, RJ: Livraria Francisco Alves.

Gauch, H. G, J. (2012). Scientific method in brief. Cambridge, United Kingdom: Cambridge University Press.

Gingras, Y. (2001). What did mathematics do to physics? History of Science, 39(4), 383–416. https://doi.org/10.1177/007327530103900401

Harman, G. H. (1965). The Inference To the Best. Philosophical Review, 74(1), 88–95. https://doi.org/10.2307/2183532

Heidemann, L. A., Araujo, I. S., & Veit, E. A. (2016). Modelagem Didático-científica: integrando atividades experimentais e o processo de modelagem científica no ensino de Física. Caderno Brasileiro de Ensino de Física, 33(1), 3–32. https://doi.org/10.1017/CBO9781107415324.004

Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15(2), 135–175. https://doi.org/10.1086/287002

Henke, A., & Höttecke, D. (2015). Physics Teachers’ Challenges in Using History and Philosophy of Science in Teaching. Science and Education, 24(4), 349–385. https://doi.org/10.1007/s11191-014-9737-3

Höttecke, D., Henke, A., & Riess, F. (2012). Implementing History and Philosophy in Science Teaching: Strategies, Methods, Results and Experiences from the European HIPST Project. Science and Education, 21(9), 1233–1261. https://doi.org/10.1007/s11191-010-9330-3

Jammer, M. (1966). The conceptual development of quantum mechanics. Nova York, United States of America: McGraw-Hill Book Company.

Jardim, W. T., & Guerra, A. (2017). Experimentos Históricos e o Ensino de Física: Agregando Reflexões a Partir Da Revisão Bibliográfica Da Área E Da História Cultural Da Ciência. Investigações Em Ensino de Ciências, 22(3), 244–263. https://doi.org/10.22600/1518-8795.ienci2017v22n3p244

Jímenez-Aleixandre, M. P., & Erduran, S. (2007). Argumentation in science education: an overview. In S. Erduran & M. P. Jímenez-Aleixandre (Org.), Argumentation in science education (pp. 3–28). Nova York, United States of America: Springer.

Junges, A. L. (2008). Inferência à melhor explicação. Intuitio, 1(1), 82–97. Recuperado de: https://revistaseletronicas.pucrs.br/ojs/index.php/intuitio/article/view/3672

Junges, A. L., & Massoni, N. T. (2018). O Consenso Científico sobre Aquecimento Global Antropogênico: Considerações Históricas e Epistemológicas e Reflexões para o Ensino dessa Temática. Revista Brasileira de Pesquisa em Educação em Ciências, 18(2), 455–491. https://doi.org/10.28976/1984-2686rbpec2018182455

Kitcher, P. (1981). Explanatory unification. Philosophy of Science, 40(4), 503–531. https://doi.org/10.5840/eps20053184

Kragh, H. (1992). A sense of history: History of science and the teaching of introductory quantum theory. Science and Education, 1(4), 349–363. https://doi.org/10.1007/BF00430962

Kragh, H. (2000). Max Planck: the reluctant revolutionary. Physics World, 13(12), 31–36. https://doi.org/10.1088/2058-7058/13/12/34

Kuhn, T. (1998). A Estrutura das Revoluções Científicas (5a. ed.). São Paulo, SP: Perspectiva.

Lakatos, I. (1989). La metodología de los programas de investigación científica: Vol. I. Madrid, Espanha: Alianza Editorial.

Laudan, L. (1978). Progress and its problems. Berkeley, United States of America: University of California Press.

Lederman, N. (1992). Students’ and teachers’ conceptions of the nature of science: do they really influence teacher behavior? Science Education, 71(4), 721–734. https://doi.org/10.1002/sce.3730710509

Lederman, N. (2006). Nature of science: Past, present, and future. In S. Abell & N. G. Lederman (Orgs.), Handbook of research on science education (pp. 831–879). Nova Jersey, United States of America: Lawrence Erlbaum.

Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of Nature of Science Questionnaire: Toward Valid and Meaningful Assessment of Learners’ Conceptions of Nature of Science. Journal of Research in Science Teaching, 39(6), 497–521. https://doi.org/10.1002/tea.10034

Lipton, P. (2004). Inference to the best explanation (2nd ed.). Abingdon, United Kingdom: Routledge.

Lycan, W. G. (2002). Explanation and epistemology. In P. Moser (Ed.), The Oxford handbook of epistemology (pp. 408–433). Oxford, United Kingdom: Oxford University Press.

Lynch, M. (2001). Is a science peace process necessary? In J. A. Labinger & H. Collins (Org.) The One Culture (pp. 48–60). Chicago, United States of America: University of Chicago Press. https://10.7208/chicago/9780226467245.003.0004

Martins, A. F. P. (2007). História e Filosofia da CIência no Ensino: Há muitas pedras nesse caminho ... Caderno Brasileiro de Ensino de Física, 24(1), 112–131. https://doi.org/10.5007/%25x

Matthews, M. R. (1992). History, Philosophy, and Science Teaching- The Present Rapprochement. 1(1), 11–47. https://doi.org/10.1007/BF00430208

Matthews, M. R. (1995). História, Filosofia e Ensino de Ciências: a tendência atual de reaproximação. Caderno Catarinense de Ensino de Física, 12(3), 164–214. https://doi.org/10.5007/%25x

McCain, K. (2015). Explanation and the Nature of Scientific Knowledge. Science and Education, 24(7–8), 827–854. https://doi.org/10.1007/s11191-015-9775-5

McMullin, M. (1992). The inference that makes science. Milwaukee, United States of America: Marquette University Press.

Mcneill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting Students’ Construction of Scientific Explanations by Fading Scaffolds in Instructional Materials. Journal of the Learning Sciences, 15(2), 153–191. https://doi.org/10.1207/s15327809jls1502

Medeiros, A., & Monteiro, M. A. (2002). A invisibilidade dos pressupostos e das limitações da teoria Copernica nos livros didáticos de Física. Caderno Brasileiro de Ensino de Física, 19(1), 28–52. https://doi.org/10.5007/%x

Mendonça, A. L. de O., & Videira, A. A. P. (2007). Progresso científico e incomensurabilidade em Thomas Kuhn. Scientiae Studia, 5(2), 169–183. https://doi.org/10.1590/s1678-31662007000200003

Millikan, R. A. (1916). A Direct Photoelectric Determination of Planck’s “h”. Physical Review, 7(3), 355–388. https://doi.org/10.1103/physrev.7.355

Millikan, R. A. (1917). The Electron. Chicago, United States of America: University of Chicago Press.

Millikan, R. A. (1950). The Autobiography of Robert A. Millikan. Nova Jersey, United States of America: Prentice-Hall.

Nascimento, S. S. do, & Vieira, R. D. (2008). Contribuições e limites do padrão de argumento de Toulmin aplicado em situações argumentativas de sala de aula de ciências. Revista Brasileira de Pesquisa em Educação em Ciências, 8(2), 1–20. Recuperado de: https://periodicos.ufmg.br/index.php/rbpec/article/view/4018

Niaz, M., Klassen, S., McMillan, B., & Metz, D. (2010). Reconstruction of the history of the photoelectric effect and its implications for general physics textbooks. Science Education, 94(5), 903–931. https://doi.org/10.1002/sce.20389

Nola, R., & Irzik, G. (2005). Philosophy, Science, Education and Culture (Vol. 28). Springer. https://doi.org/10.1007/1-4020-3729-5

Norris, S. P., Guilbert, S. M., Smith, M. L., Hakimelahi, S., & Phillips, L. M. (2005). A theoretical framework for narrative explanation in science. Science Education, 89(4), 535–563. https://doi.org/10.1002/sce.20063

Passmore, J. (1962). Explanation in everyday life, in science, and in history. History and Theory, 2(2), 16–34.

Pietrocola, M. (1999). Construção e realidade: o realismo científico de Mário Bunge e o ensino de ciências através de modelos. Investigações Em Ensino de Ciências, 4(3), 213–227.

Popper, K. R. (1962). Conjectures and refutations. Nova York, United States of America: Basic Books.

Praia, J., Pérez, D. G., & Vilches, A. (2007). O papel da Natureza da Ciência na educação para a cidadania. Ciência. Ciência & Educação (Bauru), 13(2), 141–156. https://doi.org/10.1590/S1516-73132007000200001

Quine, W. V. O. (1951). Two Dogmas of Empiricism. The Philosophical Review, 60, 20–43. https://doi.org/10.2307/2181906

Raicik, A. C., & Peduzzi, L. O. Q. (2015). Uma discussão acerca dos contextos da descoberta e da justificativa : a dinâmica entre hipótese e experimentação na ciência. Revista Brasileira de História da Ciência, 8(1), 132–146.

Raicik, A. C., & Peduzzi, L. O. Q. (2016). Potencialidades e limitações de um Módulo de Ensino: Uma discussão histórico-filosófica dos estudos de Gray e Du Fay. Investigações em Ensino de Ciências, 20(2), 138–160. https://doi.org/10.22600/1518-8795.ienci2016v20n2p138

Reis, P., & Galvão, C. (2005). Controvérsias sócio-científicas e prática pedagógica de jovens professores. Investigações em Ensino de Ciências, 10(2), 131–160.

Rodrigues Junior, E., Luna, F. J., Linhares, M. P., & Hygino, C. B. (2015). Implicações didáticas de história da ciência no ensino de Física: uma revisão de literatura através da análise textual discursiva. Caderno Brasileiro de Ensino de Física, 32(3), 769–808. https://doi.org/10.5007/2175-7941.2015v32n3p769

Rodrigues, R. F., & Pereira, A. P. de. (2018). Explicações no ensino de ciências: revisando o conceito a partir de três distinções básicas. Ciência & Educação (Bauru), 24(1), 43–56. https://doi.org/10.1590/1516-731320180010004

Rudge, D. W., Cassidy, D. P., Fulford, J. M., & Howe, E. M. (2014). Changes Observed in Views of Nature of Science During a Historically Based Unit. Science and Education, 23(9), 1879–1909. https://doi.org/10.1007/s11191-012-9572-3

Sadler, T. D., & Donnelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463–1488. https://doi.org/10.1080/09500690600708717

Sales, L. S. (2003). Estruturalismo - história, definições, problemas. Revista de Ciências Humanas, 33, 159–188. https://doi.org/10.5007/%25x

Salmon, W. C. (1984). Scientific explanation and the causal structure of the world. Princeton, United States of America: Princeton University Press.

Sandoval, W. A. Millwood, K. A. (2005). The Quality of Students’ Use of Evidence in Written Scientific Explanations. Cognition and Instruction, 23(1), 23–55. https://doi.org/10.1207/s1532690xci2301

Slezak, P. (1994). Sociology of scientific knowledge and scientific education: Part I. Science & Education, 3(3), 265–294. https://doi.org/10.1007/BF00540157

Strevens, M. (2006). Scientific Explanation. In D. M. Borchert (Ed.), Encyclopedia of Philosophy (2a ed.). Macmillan. https://doi.org/10.1055/s-2007-1001966

Stuewer, R. H. (1970). Non-Einsteinian Interpretations of the Photoelectric Effect. In Minnesota Studies in the Philosophy of Science, Volume V. Historical and Philosophical Perspectives of Science (Vol. 5, pp. 246–263).

Thagard, P. (2004). Causal inference in legal decision making: explanatory coherence vs. bayesian networks. Applied Artificial Intelligence, 18(3–4), 231–249. https://doi.org/10.1080/08839510490279861

Thagard, P. (2014). Explanatory Identities and Conceptual Change. Science and Education, 23(7), 1531–1548. https://doi.org/10.1007/s11191-014-9682-1

Thagard, P. R. (1978). The Best Explanation: Criteria for Theory Choice. The Journal of Philosophy, 75(2), 76–92. Recuperado de: http://links.jstor.org/sici?sici=0022-362X%28197802%2975%3A2%3C76%3ATBECFT%3E2.0.CO%3B2-T

Van Frassen, B. (1980). The scientific image. Oxford, United Kingdom: Clarendon Press.

Vasconcelos, J. A. (2014). História e Pós-estruturalismo. In M. Rago & R. Gimenes (Orgs.), Narrar o passado, repensar a história (pp. 105–121). Campinas, SP: Unicamp.

Vázquez-Alonso, Á., Manassero-Mas, M. A., Acevedo-Díaz, J. A., & Acevedo-Romero, P. (2008). Consensos sobre a Natureza da Ciência: A Ciência e a Tecnologia na Sociedade. Química Nova na Escola, 27, 34–50. Recuperado de: http://qnesc.sbq.org.br/online/qnesc27/07-ibero-6.pdf

Whitaker, M. A. B. (1979). History and quasi-history in physics education. I. Physics Education, 12(2), 108–112. https://doi.org/10.1088/0031-9120/14/2/009

Wilkenfeld, D. A., & Lombrozo, T. (2015). Inference to the Best Explanation (IBE) Versus Explaining for the Best Inference (EBI). Science and Education, 24(9–10), 1059–1077. https://doi.org/10.1007/s11191-015-9784-4

Williams, C. T., & Rudge, D. W. (2016). Emphasizing the History of Genetics in an Explicit and Reflective Approach to Teaching the Nature of Science: A Pilot Study. Science and Education, 25(3–4), 407–427. https://doi.org/10.1007/s11191-016-9821-y

Published

2020-12-26

How to Cite

Rodrigues, R. F., & Pereira, A. P. de. (2020). The Inference to the Best Explanation as heuristic to address historical episodes in Science Education through explanatory controversies. Investigations in Science Education, 25(3), 557–576. https://doi.org/10.22600/1518-8795.ienci2020v25n3p557