Evaluation of a sustainable educational proposal with a STEM approach to improve attitudes towards science or mathematics in 5th and 6th grade primary school students in Spain

Authors

  • Cristian Andrés Ferrada Profesor Universidad de los Lagos, sede Castro Profesor de Educación General Básica, Mención Educación Matemática, Universidad Católica del Maule. Postítulo en didáctica de las matemáticas Freie Universitat Berlin, Alemania. Máster en Didáctica de la Matemática, Universidad de Granada. España Doctorando en Ciencias de la Educación, Universidad de Granada, España. Línea de Investigación: Didáctica de las Ciencias Experimentales. Postdoctorado © En psicología con orientación en metodología de la investigación de revisión" https://orcid.org/0000-0003-2678-7334
  • Francisco Javier Carrillo-Rosúa Universidad de Granada http://orcid.org/0000-0003-2889-3966
  • Danilo Antonio Díaz-Levicoy Antonio Díaz-Levicoy Universidad Católica del Maule http://orcid.org/0000-0001-8371-7899
  • Francisco Raul Silva-Díaz Raul Silva-Díaz Universidad de Granada http://orcid.org/0000-0002-7047-3546

DOI:

https://doi.org/10.22600/1518-8795.ienci2023v28n1p111

Keywords:

STEM education, educational robotics, attitude towards science, attitude towards mathematics, Sustainable education, Inclusive education

Abstract

An investigation associated with the implementation of an interdisciplinary project, with a STEM approach, applied in a Primary Education center in a vulnerable context is presented. The work with the students was carried out according to a methodology of inquiry and problem solving. A quasi-experimental design is followed, using as dependent variables the attitude towards science and mathematics, analyzed pre-intervention and post-intervention. The experimental group is made up of 15 3rd cycle students, forming the control group from a matching process with the rest of the students at the center. The findings inform that the implementation of the STEM program generates better results in the attitude towards science (p=,004; TE= 1,254) than mathematics (p=,574; TE=,382) the technological tools used, the work time and the connection process between disciplines in STEM reinforce the work carried out. Finally, the research implies that there is a need to increase the understanding of the interrelationships between aspects of STEM, and the need to develop models of learning based on STEM to support the application of STEM in learning.

Author Biographies

Cristian Andrés Ferrada, Profesor Universidad de los Lagos, sede Castro Profesor de Educación General Básica, Mención Educación Matemática, Universidad Católica del Maule. Postítulo en didáctica de las matemáticas Freie Universitat Berlin, Alemania. Máster en Didáctica de la Matemática, Universidad de Granada. España Doctorando en Ciencias de la Educación, Universidad de Granada, España. Línea de Investigación: Didáctica de las Ciencias Experimentales. Postdoctorado © En psicología con orientación en metodología de la investigación de revisión"

Profesor Universidad de los Lagos, sede CastroProfesor de Educación General Básica, Mención Educación Matemática, Universidad Católica del Maule.Post-título en didáctica de las matemáticas Freie Universitat Berlin, Alemania.Máster en Didáctica de las Matemáticas, Universidad de Granada. EspañaEstudiante de Doctorado en Ciencias de la Educación, Universidad de Granada, España. Línea de Investigación: Didáctica de las Ciencias Experimentales.Posdoctorado © en Psicología con orientación en la metodología de investigación de revisión"

Francisco Javier Carrillo-Rosúa, Universidad de Granada

Profesor (Doctor Contratado Profesor) (Didáctica de las Ciencias Experimentales). Dirección: Prof. Vicente Callao - Fte Ciencias Educación, 18011, Granada. Departamento de Didácticas de las Ciencias Experimentales y de la Sostenibilidad, Universidad de Granada, Granada, España. Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR).https://orcid.org/0000-0003-2889-3966   

Danilo Antonio Díaz-Levicoy Antonio Díaz-Levicoy, Universidad Católica del Maule

Catedrático de Matemáticas e Informática (Universidad de los Lagos), Máster en Educación Matemática (UniversidaddeGranada) y Doctor en Ciencias de la Educación (Universidad de Granada). Académico de la Facultad de Ciencias Básicas, Universidad Católica del Maule. Línea de Investigación: Didáctica de las Matemáticas y Estadística.

Francisco Raul Silva-Díaz Raul Silva-Díaz, Universidad de Granada

Profesor de Educación Básica, Mención Educación Matemática, Universidad Católica del Maule. Máster en Investigación e Innovación en el Currículo y Formación Especialidad en Ciencias Didácticas, Universidad de Granada, España. Estudiante de Doctorado en Ciencias de la Educación, Universidad de Granada. Línea de investigación: Didáctica de las Ciencias Experimentales.

References

Amaya, J. Díaz, M., & Sánchez M. (2017) Metodología para impulsar el interés en las STEM en niñas de secundaria en el sur de Cali. En E. Serna (Ed.), Investigación Formativa en Ingeniería (pp.100-106). Cali, Colombia: Editorial Instituto Antioqueño de Investigación.

Arabit-García J., & Prendes-Espinosa, Mª. (2020). Metodologías y Tecnologías para enseñar STEM en Educación Primaria: análisis de necesidades. Pixel-Bit. Revista de Medios y Educación, 57, 107-128. https://doi.org/10.12795/pixelbit.2020.i57.04

Avvisati, F. (2020). The measure of socio-economic status in PISA: a review and some suggested improvements. Large-Scale Assessments in Education, 8(1), 8. https://doi.org/10.1186/s40536-020-00086-x.

Barak, M., & Zadok, Y. (2009). Robotics projects and learning concepts in science, technology and problem solving. International Journal of Technology and Design Education, 19(3), 289-307. https://doi.org/10.1007/s10798-007-9043-3

Benitti, F. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978-988. http://doi:10.1016/j.compedu.2011.10.006

Bybee, R. (2010). Advancing STEM Education: A 2020 vision., Technology and Engineering Teacher, 1(70), 30-35.

Bybee, R. (2013). The case for STEM education challenges and opportunities. Washington, DC, United States of America: National STEM Teachers Asociation.

Cairns, D. (2023). Epistemological beliefs about science and their relations to gender, attitudes to science and science achievement in uae schools. In M. Dickson, M. McMinn, & D. Cairns (Eds.), Gender in STEM Education in the Arab Gulf Countries (pp. 31-59). Singapore, Singapore: Springer Nature. https://doi.org/10.1007/978-981-19-9135-6_2

Casis, M., Rico, N., & Castro, E. (2017). Motivación, autoconfianza y ansiedad como descriptores de la actitud hacia las matemáticas de los futuros profesores de educación básica de Chile. PNA, 11(3), 181-203. http://hdl.handle.net/10481/45499

Cohen, L., Manion, L., & Morrison, K. (2000). Research Methods in Education. (5a Ed.), London, England: Routledge Falmer.

Coxon, S. (2012). The malleability of spatial ability under treatment of a first lego league-based Robotics simulation. Journal for the Education of the Gifted, 35(3), 291-316. https://doi.org/10.1177/0162353212451788

Datteri, E., & Zecca, L. (2016). The Game of Science: An Experiment in Synthetic Roboethology with Primary School Children. IEEE Robotics & Automation Magazine, 23(2), 24-29. http://doi:10.1109/mra.2016.2533038

Domènech-Casal, J. (2018). Aprendizaje Basado en Proyectos en el marco STEM. Componentes didácticas para la Competencia Científica. Ápice. Revista de Educación Científica, 2(2), 29-42. https://doi.org/10.17979/arec.2018.2.2.4524

Duque, M., Tiberio, J., Gómez, M., & Vásquez, C. (2011). Pequeños científicos program: Stem k5-k12 education in Colombia. In IEEE (Ed.), Proceedings Integrated STEM Education Conference (ISEC) (pp. 46-49). Ewing, NJ, United States of America: IEEE.

Fernández-Martín, F., Arco-Tirado, J., Hervás-Torres, M., Carrillo-Rosúa, J., Ruiz-Hidalgo, J., & Romero-López, M. (2020). Making STEM Education Objectives Sustainable through a Tutoring Program. Sustainability, 12(16), 6653. http://doi:10.3390/su12166653

García-Terceño, E., Greca, I., Santa Olalla-Mariscal, G., & Diez-Ojeda, M. (2023). The participation of deaf and hard of hearing children in non-formal science activities. Frontiers in Education, 8, 1084373. https://doi.org/10.3389/feduc.2023.1084373

Gates, A. (2017). Benefits of a STEAM Collaboration in Newark, New Jersey: Volcano Simulation through a Glass-Making Experience. Journal of Geoscience Education, 65(1), 4-11. https://doi.org/10.5408/16-188.1

Gómez-Montilla, C., & Ruiz-Gallardo, J. (2016). El rincón de la ciencia y la actitud hacia las ciencias en Educación Infantil. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(3), 643-666.

Greca I. M., Ortiz-Revilla J., & Arriassecq I. (2021) Diseño y evaluación de una secuencia de enseñanza-aprendizaje STEAM para Educación Primaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 18(1), 1802. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1802

Gross, K., & Gross, S. (2016). Transformation: Constructivism, Design Thinking, and Elementary STEAM. Art Education, 69(6), 36-43. https://doi:10.1080/00043125.2016.1224869

Hernández, R., Fernández, C., & Baptista, P. (2010). Metodología de la Investigación. México, México: Mac Graw Hill.

Highfield, K. (2010). Robotic toys as a catalyst for mathematical problem solving. Australian Primary Mathematics Classroom, 15(2), 22-27.

Horwedel, D. (2006). Operation STEM. Diverse Issues in Higher Education, 23(20), 36-39.

Julià, C., & Antolí, J. (2015). Spatial ability learning through educational robotics. International Journal of Technology and Design Education, 26(2), 185-203. http://doi:10.1007/s10798-015-9307-2

Kang, N. (2019). A review of the effect of integrated STEM or STEAM (science, technology, engineering, arts, and mathematics) education in South Korea. Asia-Pacific Science Education, 5, 6. https://doi.org/10.1186/s41029-019-0034-y

Kim, S., & Lee, C. (2016). Effects of robot for teaching geometry to fourth graders. International Journal of Innovation in Science and Mathematics Education, 24(2), 52-70.

López-Escribano, C., & Sánchez-Montoya, R. (2012). Scratch y necesidades educativas especiales: Programación para todos. RED, Revista de Educación a Distancia, 34(4), 1-14.

Maltese, A., & Tai, R. (2010). Eyeballs in the fridge: Sources of early interest in science. International Journal of Science Education, 32(5), 669-685. https://doi.org/10.1080/09500690902792385

Marrero, I. (2019). Desde LOGO hasta Scratch y más allá. Números, 100, 213-217.

Martín-Páez, T., Carrillo-Rosúa, J., Lupiáñez-Gómez, J., & Vílchez-González, J. (2019). Análisis de las pruebas externas de evaluación de la competencia científico-tecnológica de 6.º de Educación Primaria en España (2016). Enseñanza de las Ciencias, 37(2), 127-149. https://doi.org/10.5565/rev/ensciencias.2632

Reiss, M. y Mujtaba, T. (2017) Should we embed careers education in STEM lessons? The Curriculum Journal, 28(1), 137-150. https://doi.org/10.1080/09585176.2016.1261718

Ministerio de Educación, Cultura y Deporte (2014). Real Decreto 126/2014 de 28 de febrero, por el que se establece el currículo básico de la Educación Primaria. BOE, 52, 19349-19420. Recuperado de: http://www.boe.es

Muñoz-Campos, V., Franco-Mariscal, A., & Blanco-López, Á. (2020). Integration of scientific practices into daily living contexts: a framework for the design of teaching-learning sequences. International Journal of Science Education, 42(15), 1-27. https://doi.org/10.1080/09500693.2020.1821932

Nemiro, J., Larriva, C., & Jawaharlal, M. (2015). Developing Creative Behavior in Elementary School Students with Robotics. The Journal of Creative Behavior, 51(1), 70-90. http://doi:10.1002/jocb.87

Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049-1079. https://doi.org/10.1080/0950069032000032199

Palacios, A., Arias, V., & Arias, B. (2014). Las actitudes hacia las matemáticas: construcción y validación de un instrumento para su medida. Revista de Psicodidáctica, 19(1), 67-91.

Ramírez, P., & Sosa, H. (2013). Aprendizaje de y con robótica, algunas experiencias. Revista Educación, 37(1), 43-63. https://doi.org/10.15517/revedu.v37i1.10628

Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education, 5(34), 17-28.

Romero-Ariza, M., Quesada, A., & Abril, A. (2017). Science Teachers as Key Actors in Responsible Research and innovation: Evaluation of a teacher training program. Sisyphus-Journal of Education, 5(3), 107-121. https://doi.org/10.25749/sis.12274

Ruiz-Vicente, F., Zapatera- Llinares, A., & Montes-Sánchez, N. (2020). “Sustainable City”: A Steam Project Using Robotics to Bring the City of the Future to Primary Education Students. Sustainability, 12(22), 9696. https://doi.org/10.3390/su12229696

Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26.

Sauvé L. (2000). Para construir un patrimonio de investigación en educación ambiental. Tópicos en Educación Ambiental, 2(5), 51-69.

Silva-Diaz, F., Carrillo-Rosúa, J., & Fernández-Plaza, J.A. (2021). Uso de Tecnologías Inmersivas y su impacto en las actitudes científico-matemáticas del estudiantado de Educación Secundaria Obligatoria en un contexto en riesgo de exclusión social. Educar, 57(1), 119-138. https://doi.org/10.5565/rev/educar.1136

Suescun-Florez, E., Iskander, M., Kapila, V., & Cain, R. (2013). Geotechnical engineering in US elementary schools. European Journal of Engineering Education, 38(3), 300-315. http://doi:10.1080/03043797.2013.800019

Taylor, M., Vasquez, E., & Donehower, C. (2017). Computer Programming with Early Elementary Students with Down Syndrome. Journal of Special Education Technology, 32(3), 149-159. http://doi:10.1177/0162643417704439

Tena, È., & Couso, D. (2023). ¿ Cómo sé que mi secuencia didáctica es de calidad? Propuesta de un marco de evaluación desde la perspectiva de Investigación Basada en Diseño. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 2801-2801. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2023.v20.i2.2801

Young, J., Ortiz, N., & Young, J. (2017). STEMulating interest: A meta-analysis of the effects of out-of-school time on student STEM interest. International Journal of Education in Mathematics, Science and Technology, 5(1), 62-74. http://doi:10.18404/IJEMST.61149

Zhang, D., & Campbell, T. (2011). The Psychometric Evaluation of a Three-Dimension Elementary Science Attitude Survey. Journal of Science Teacher Education, 22(7), 595-612. http://doi:10.1007/s10972-010-9202-3

Zhao, L., He, W., Liu, X., Tai, K., & Hong, J. (2021). Exploring the effects on fifth graders’ concept achievement and scientific epistemological beliefs: Applying the Prediction-Observation-Explanation Inquiry-Based Learning Model in Science Education. Journal of Baltic Science Education, 20(4), 664-676. https://doi.org/10.33225/jbse/21.20.664

Zoller, U. (2015). Based Transformative Science/STEM/STES/STESEP Education for “Sustainability Thinking”: From Teaching to “Know” to Learning to “Think”. Sustainability, 7(4), 4474-4491. https://doi.org/10.3390/su7044474

Zollman, A. (2012). Learning for STEM literacy: STEM literacy for learning. School Science and Mathematics, 112(1), 12-19. https://doi.org/10.1111/j.1949-8594.2012.00101.x

Published

2023-05-02

How to Cite

Ferrada, C. A., Carrillo-Rosúa, F. J., Díaz-Levicoy, D. A. D.-L. A., & Silva-Díaz, F. R. S.-D. R. (2023). Evaluation of a sustainable educational proposal with a STEM approach to improve attitudes towards science or mathematics in 5th and 6th grade primary school students in Spain. Investigations in Science Education, 28(1), 111–126. https://doi.org/10.22600/1518-8795.ienci2023v28n1p111