A literature review about the approach of the process of scientific measurement in physics teaching in basic education

Authors

DOI:

https://doi.org/10.22600/1518-8795.ienci2023v28n2p332

Keywords:

measurement, literature review, physics teaching

Abstract

The scientific measurement process is addressed by scientists and philosophers as a central element and full of subtleties. Grounded in the discussions of this field, research in science education area has analyzed the nuances of the focus on measurement in classrooms. Synthesizing these results, we present a literature review of the last 30 years of publications on the teaching of Physics with a focus on the scientific measurement process in Middle and High School. From the analysis of 34 articles published in important journals of science education field, we concluded that: i. the area has privileged empirical research, presenting few theoretical or historical analyses; ii. there is great diversity in terms of aspects of the measurement process explored, with significant focus on implications of measurement activities on students' conceptions about the nature of science; iii. Thomas Kuhn's perspective is hegemonic in this field; iv. there is no convergence in terms of the teaching andlearning perspectives explored, with a great diversity of concepts addressed; v. without adequate instruction and explicitly directed towards epistemological and procedural aspects of the measurement process, students timidly evolve in their conceptions about the nature of science and develop few skills in data collection, processing and analysis. In summary, the results show little convergence of the publications in terms of results, since they have a great diversity of approaches, at the same time that they have little diversity in terms of epistemological references. It is concluded that the focus on scientific measurement in Middle and High School is an incipient field in the area of Physics teaching, with ample space for further investigation.

References

Allie, S., Buffler, A., Campbell, B., & Lubben, F. (1998). First?year physics students’ perceptions of the quality of experimental measurements. Internacional Journal of Science Education, 20(4), 447–459. https://doi.org/10.1080/0950069980200405

Apedoe, X., & Ford, M. (2010). The Empirical Attitude , Material Practice and Design Activities. Science and Education, 19, 165–186. https://doi.org/10.1007/s11191-009-9185-7

Baker, D. R., & Piburn, M. (1991). Process Skills Acquisition, Cognitive Growth, and Attitude Change of Ninth Grade Students in a Scientific Literacy Course. Journal of Research in Science Teaching, 28(5), 423–436. https:// doi:10.1002/tea.3660280506

Barolli, E., Laburú, C. E., & Guridi, M. V. (2010). Laboratorio didáctico de ciencias: caminos de investigación. Revista Electrónica de Enseñanza de Las Ciencias, 9(1), 88–110. Recuperado de http://reec.uvigo.es/volumenes/volumen9/ART6_VOL9_N1.pdf

Buffler, A., Allie, S., & Lubben, F. (2001). The development of first year physics students’ ideas about measurement in terms of point and set paradigms. Internacional Journal of Science Education, 23(11), 1137–1156. https://doi.org/10.1080/09500690110039567

Buffler, A., Lubben, F., & Ibrahim, B. (2009). The Relationship between Students’ Views of the Nature of Science and their Views of the Nature of Scientific Measurement. International Journal of Science Education, 31(9),1137–1156. https://doi.org/10.1080/09500690802189807

Camargo Filho, P. S., Laburú, C. E., & Barros, M. A. (2015). Para além dos paradigmas da medição. Ciência & Educacão (Bauru), 21(4), 817–834. http://dx.doi.org/10.1590/1516-731320150040003

Duggan, S., Johnson, P., & Gott, R. (1996). A Critical Point in Investigative Work: Defining Variables. Journal of Research in Science Teaching, 33(5), 461–474. https://doi.org/10.1002/(SICI)1098-2736(199605)

Farris, A. V., Dickes, A. C., & Sengupta, P. (2019). Learning to Interpret Measurement and Motion in Fourth Grade Computational Modeling. Science and Education, 28(8), 927–956. http://doi.org/10.1007/s11191-019-00069-7

Ferguson, J. P., Tytler, R., & White, P. (2021). The role of aesthetics in the teaching and learning of data modelling. International Journal of Science Education, 44(5), 753-774. https://doi.org/10.1080/09500693.2021.1875514

Força, A. C., Laburú, C. E., & Silva, O. H. M. (2013). Uma Proposta de Estratégia Pedagógica Para Iniciação aos Conceitos de Medição por Avaliação de Dois Métodos Alternativos. Alexandria: Revista de Educação Em Ciência e Tecnologia, 6(3), 87–105. Recuperado de https://periodicos.ufsc.br/index.php/alexandria/article/view/38011

Giere, R. N. (1999). Science without laws. Chicago, United States of America: University of Chicago Press.

Goodwin, C. (1994). Professional vision. American Anthropologist, 96(3), 606–633

Gomes, A. D. T. (2016). Concepções de estudantes do Ensino Médio sobre os conceitos de média e dispersão de dados. Caderno Brasileiro de Ensino de Física, 33(1), 51–71. https://doi.org/10.5007/2175-7941.2016v33n1p51

Heinicke, S., & Heering, P. (2013). Discovering Randomness, Recovering Expertise: The Different Approaches to the Quality in Measurement of Coulomb and Gauss and of Today’s Students. Science and Education, 22(3), 483–503. https://doi.org/10.1007/s11191-011-9430-8

Hesse, M. (1966). Models and analogies in science. Notre Dame, United States of America: University of Notre Dame Press. Recuperado de http://mechanism.ucsd.edu/teaching/models/hesse.pdf

Hug, B., & Mcneill, K. L. M. (2008). Use of First?hand and Second?hand Data in Science: Does data type influence classroom conversations? International Journal of Science Education, 30(13), 1725–1751. https://doi.org/10.1080/09500690701506945

Kapon, S. (2016). Doing Research in School?: Physics Inquiry in the Zone of Proximal Development. Journal of Research in Science Teaching, 53(8), 1172-1197. https://doi.org/10.1002/tea.21325

Keller, E. F. (1984). A feeling for the organism, 10th anniversary edition: the life and work of Barbara McClintock. Macmillan.

Kuhn, D. (2010). What is Scientific Thinking and How Does it Develop? Teachers College Columbia University. Recuperado de https://www.tc.columbia.edu/faculty/dk100/faculty-profile/files/10_whatisscientificthinkingandhowdoesitdevelop.pdf

Kuhn, D. (2016). What Do Young Science Students Need to Learn About Variables? Science Education, 100(2), 392–403. https://doi.org/10.1002/sce.21207

Kuhn, D., Arvidsson, T. S., Lesperance, R., & Corprew, R. (2017). Can Engaging in Science Practices Promote Deep Understanding of Them? Science Education, 101(2), 232–250. https://doi.org/10.1002/sce.21263

Laburú, C. E., & Barros, M. A. (2009). Problemas com a compreensão de estudantes em medição: razões para a formação do paradigma pontual. Investigações em Ensino de Ciências, 14(2), 151–162. Recuperado de https://ienci.if.ufrgs.br/index.php/ienci/article/view/353

Laburú, C. E., Da Silva, O. H. M., & Força, A. C. (2012). Acurácia na retirada da medida instigada por uma estratégia de ensino de orientação kuhniana. Revista Brasileira de Ensino de Fisica, 34(2), 1–6. https://doi.org/10.1590/s1806-11172012000200014

Laburú, C. E., Silva, O. H. M., & Sales, D. R. (2010). Superações conceituais de estudantes do ensino médio em medição o a partir de questionamentos de uma situação experimental problemática. Revista Brasileira de Ensino de Fisica, 32(1), 1–15. https://doi.org/10.1590/S1806-11172010000100012

Leblebicioglu, G., Metin, D., Capkinoglu, E., Cetin, P. S., Dogan, E. E., & Schwartz, R. (2017). Changes in Students’ Views about Nature of Scientific Inquiry at a Science Camp. Science and Education, 26, 889–917. https://doi.org/10.1007/s11191-017-9941-z

Lehrer, R. (2009). Designing to develop disciplinary dispositions: Modeling natural systems. American Psychologist, 64(8), 759–771. https://doi.org/10.1037/0003-066X.64.8.759

Longino, H. (1994). The fate of knowledge in social theories of science. London, England: Rowman & Littlefield Publishers.

Louca, L. T., & Zacharia, Z. C. (2012). Modeling-based learning in science education: Cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64(4), 471–492. https://doi.org/10.1080/00131911.2011.628748

Lubben, F., Campbell, B., Buffler, A., & Allie, S. (2001). Point and set reasoning in practical science measurement by entering university freshmen. Science Education, 85(4), 311–327. https://doi.org/10.1002/sce.1012

Manz, E., Lehrer, R., & Schauble, L. (2020). Rethinking the classroom science investigation. Journal of Research in Science Teaching, 57(7), 1148-1174. https://doi.org/10.1002/tea.21625

Mauro, F. M. Di, & Furman, M. (2016). Impact of an inquiry unit on grade 4 students’ science learning. International Journal of Science Education, 38(14), 2239–2258. https://doi.org/10.1080/09500693.2016.1234085

MEC – Ministério da Educação. (2018). Base Nacional Comum Curricular. Recuperada de http://basenacionalcomum.mec.gov.br/images/BNCC_EI_EF_110518_versaofinal_site.pdf

Millar, R. (1987) Towards a Role for Experiment in the Science Teaching Laboratory. Studies in Science Education, 14(1), 109-118. https://doi.org/10.1080/03057268708559941

Morris, B. J., Masnick, A. M., Baker, K., & Junglen, A. (2015). An Analysis of Data Activities and Instructional Supports in Middle School Science Textbooks. International Journal of Science Education, 37(16), 2708-2720. https://doi.org/10.1080/09500693.2015.1101655

Munier, V., Merle, H., & Brehelin, D. (2013). Teaching Scientific Measurement and Uncertainty in Elementary School. International Journal of Science Education, 35(16), 2752–2783. https://doi.org/10.1080/09500693.2011.640360

Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, United States of America: The MIT Press.

National Research Council (2013). Next generation science standards: For states, by states. Washington, United States of America: The National Academies Press. https://doi.org/10.17226/18290

Ochs, E., Gonzales, P., & Jacoby, S. (1996). “When I come down I'm in the domain state”: grammar and graphic representation in the interpretive activity of physicists. Studies in Interactional Sociolinguistics, 13, 328–369

Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720. https://doi.org/10.1002/tea.10105

Pigosso, L. T., & Heidemann, L. A. (2021). O processo de medição no Ensino de Física?: uma revisão da literatura brasileira. Anais do XIII Encontro Nacional de Pesquisa Em Educação Em Ciências, 1–7. Re-cuperado de https://editorarealize.com.br/artigo/visualizar/75993

Pols, C. F. J., Dekkers, P. J. J. M., & de Vries, M. J. (2021). What do they know? Investigating students’ ability to analyse experimental data in secondary physics education. International Journal of Science Education, 43(2), 274–297. https://doi.org/10.1080/09500693.2020.1865588

Rosa, C. W., Rosa, Á. B., & Pecatti, C. (2007). Atividades experimentais nas séries iniciais: relato de uma investigação. Revista Electrónica de Enseñanza de Las Ciencias, 6(2), 263–274. Recuperado de http://reec.uvigo.es/volumenes/volumen6/ART3_Vol6_N2.pdf

Sandoval, W. A., & Çan, A. (2011). Elementary Children’s Judgments of the Epistemic Status of Sources of Justification. Science Education, 95(3), 383–408. https://doi.org/10.1002/sce.20426

Schauble, L., Klopfer, L. E., & Raghavan, K. (1991). Students ’ Transition from an Engineering Model to a Science Model of Experimentation. Journal of Research in Science Teaching, 28(9), 859–882. https://doi.org/10.1002/tea.3660280910

Schwarz, C. V., Passmore, C., & Reiser, B. J. (2017). Helping students make sense of the world using next generation science and engineering practices. Arlington, United States of America: NSTA Press

Séré, M.-G., Journeaux, R., & Larcher, C. (1993). Learning the statistical analysis of measurement errors. International Journal of Science Education, 15(4), 427–438. https://doi.org/10.1080/0950069930150406

Silva, O. H. M., & Laburú, C. E. (2013). Um encaminhamento didático fundamentado na formulação de perguntas como auxílio ao processo educacional de medição. Revista Brasileira de Pesquisa em Educação em Ciências, 13(3), 195–213. Recuperado de https://periodicos.ufmg.br/index.php/rbpec/article/view/4277

Sullivan, F. R. (2008). Robotics and Science Literacy?: Thinking Skills , Science Process Skills and Systems Understanding. Journal of Research in Science Teaching, 45(3), 373–394. http://dx.doi.org/10.1002/tea.20238

Toplis, R. (2007). Evaluating Science Investigations at Ages 14 – 16: Dealing with anomalous. International Journal of Science Education, 29(2), 127–150. https://doi.org/10.1080/09500690500498278

Varelas, M. (1996). Between Theory and Data in a Seventh-Grade Science Class. Journal of Research in Science Teaching, 33(3), 229–263. Recuperado de https://www.academia.edu/17046190/Between_theory_and_data_in_a_Seventh_grade_science_class

Zachos, P., Hick, T. L., Doane, W. E. J., & Sargent, C. (2000). Setting Theoretical and Empirical Foundations for Assessing Scientific Inquiry and Discovery in Educational Programs. Journal of Research in Science Teaching, 37(9), 938–962. Recuperado de https://ui.adsabs.harvard.edu/abs/2000JRScT..37..938Z/abstract

Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967. https://doi.org/10.1002/sce.20259

Published

2023-09-05

How to Cite

Tasca Pigosso, L., & Albuquerque Heidemann, L. (2023). A literature review about the approach of the process of scientific measurement in physics teaching in basic education. Investigations in Science Education, 28(2), 332–351. https://doi.org/10.22600/1518-8795.ienci2023v28n2p332