Possible Partial Models of genetic inheritance in high school students

Authors

DOI:

https://doi.org/10.22600/1518-8795.ienci2023v28n3p148

Keywords:

Mental models, mental representations, symbolic representations, genetic heritage, high school

Abstract

This work analyzed the mental models from the perspective of the Possible Partial Models (PPM), which allow us to know the functioning of the students’ explanatory processes for a certain phenomenology. The sample was made up of 186 high school students who took the subject of Biology V, who answered a previously validated questionnaire. The results evidenced three models. The MPPI and MPPII show substantial and static conceptions of genetic processes, which lead the student to generate explanations that are far from scientific knowledge. Students who exhibit the third model MPPIII, make more complete inferences closer to scientific knowledge, and show relationships between the mechanisms of inheritance and meiotic processes. These findings make it possible to recognize that all the students in the sample can, within a PPM, of constructing sound reasonings about genetic inheritance and highlight the importance of students explicit their reasoning to identify the main comprehension problems about this topic.

Author Biographies

Beatriz Eugenia García Rivera, Instituto de Ciencias Aplicadas y Tecnología-UNAM

Biologist from the Faculty of Sciences, Master and Doctor in Pedagogy from the Faculty of Philosophy and Letters, all from UNAM. Academic of the Group of Cognition and Didactics of Sciences of the ICAT-UNAM, where she participates in the development of multidisciplinary educational projects that link aspects theoretical with the generation of proposals, tangible educational materials and digitals, as well as teacher training, for the teaching and learning of science in different contexts and educational levels. Her line of work is focuses particularly on the teaching and learning of biology. Co-author of various articles, chapters and research books on these issues.

Leticia Gallegos Cázares, Instituto de Ciencias Aplicadas y Tecnología-UNAM

Academic at the Institute of Applied Sciences and Technology of the UNAM. I’m a Physicist and I hold a Master in Higher Education and a PhD in Pedagogy all at the UNAM. Professor of the postgraduate degree in Pedagogy of the Faculty of Philosophy and Letters and of the master’s degree in Teaching for Higher Secondary Education. Author of more than 40 research publications about conceptual training, conceptual change and science conceptions of teachers in international and national refereed journals. Dr. Gallegos has carried out research in preschool children on the formation of physics concepts and has participated in various projects for the development of teaching materials as well as intervention projects in the classroom. She is the author and co-author of several books and book chapters on science education, as well as physics textbooks for the high school level. In addition, Dr. Gallegos has participated in various investigations supported by UNAM, CONACYT, ILCE and SEP. Some of these projects are related to the knowledge of the mechanisms of construction of conceptual representations in science in students of different levels and contexts; teachers’ conceptions of the nature of science and learning and the way they act on teaching practice. She has been a member of the Experimental Teaching of Sciences Group at ICAT since its inception, and for 17 years, this group  currently is called Cognition and Didactics of Sciences Group. Dr. Gallegos has earned various national recognitions as well as awards and distinctions.  

Fernando Flores Camacho, Instituto de Ciencias Aplicadas y Tecnología-UNAM

Dr. Flores is a physicist and holds a PhD  degree in Pedagogy. His main field of work is Science Education. He has been a professor at the Science Faculty at the Universidad Nacional Autónoma de México (UNAM) and, currently, he is a professor in the master’s and doctoral programs in Pedagogy at UNAM. Also, Dr. Flores has been a guest teacher at foreign universities such as Salta University (Sao Paulo University), Autonomous University of Madrid, the National University of Colombia and the International Centre of Physics. Dr. Flores has authored more than 50 papers published in international and national journals in the field of science education, in areas such as conceptual change, representations, didactics and conceptions of nature of science in teacher. In addition, he is also the author of several book chapters and books in the science education field, as well as he is the author of physics textbooks. Dr. Flores has been the leader of several research and development projects, with support from UNAM, CONACYT and SEP. Some of these projects have been the focus of the cognitive mechanisms of conceptualization of science concepts and representations in student’s in areas of physics, biology and chemistry at different school levels and populations. Other research has been focused on the nature of science in science teacher. He has been responsible for the project of the new science laboratories for the high school program of the UNAM and has participated in several national programs of the Ministry of Public Education (SEP) as the most recent reforms of basic education, PRONAP program and the coordinator of sciences for Enciclomedia. Dr. Flores is a member of the National Research System (SNI) at level II. He holds the level D at the PRIDE program, and is a member of several research associations such as the Consejo Mexicano de Investigación Educativa (COMIE), EARLI and Academia Mexicana de Profesores de Ciencias Naturales.

Araceli Báez Islas, Instituto de Ciencias Aplicadas y Tecnología-UNAM

Biologist, from the Faculty of Higher Studies Zaragoza-UNAM, Master in Teaching for Upper Secondary Education-Biology by the Faculty of Sciences-UNAM, Doctorate in Pedagogy at the Faculty of Philosophy and Letters of the UNAM. She has participated in various environmental projects within the Agricultural and Livestock Forestry Research Institute within the Group of Geomatics, such as "Risk of the winter habitat of the monarch butterfly due to Scolytus mundus and climate change”, as well as in educational projects in the Institute of Applied Sciences and Technology-UNAM as "Processes of transformation of scientific representations in students of the baccalaureate under a multi-representational environment supported by technologies digitals”, is co-author of books and articles on science education, member of the HHMI Biointeractive Academy of Ambassadors for Science and high school teacher.

References

Aivelo, T., & Uitto A. (2021). Factors explaining students’ attitudes towards learning genetics and belief in genetic determinism. International Journal of Science Education, 43(9), 1408-1425. https://doi.org/10.1080/09500693.2021.1917789

Albaladejo, C., & Lucas, A. (1988). Pupils’ meanings for «mutation». Journal of Biological Education, 22(3), 215-219. https://doi.org/10.1080/00219266.1988.9654986

Altunoğlu, B., & Şeker, M. (2015). The Understandings of Genetics Concepts and Learning Approach of Pre-Service Science Teachers. Journal of Educational and Social Research, 5(1 S1), 61. Recuperado de https://www.richtmann.org/journal/index.php/jesr/article/view/6307

Amin, T., Smith, C., & Wiser, M. (2014). Student Conceptions and Conceptual Change: Three Overlapping Phases of Research. In N. Lederman & S. Abell (Eds.), Handbook of Research on Science Education (pp. 57-81), Nueva York, United States of America: Routledge.

Argento, D. (2013). Estudio exploratorio sobre preconcepciones en el área de Genética en alumnos de secundaria italianos y españoles. (Tesis de maestría). Universidad Internacional de La Rioja. Madrid. España. Recuperado de https://reunir.unir.net/bitstream/handle/123456789/1425/2013_01_30_TFM_ESTUDIO_DEL_TRABAJO.pdfhttps://reunir.unir.net

Bahar, M., Johnstone. A., & Hansell M. (1999). Revisiting learning difficulties in biology. Journal of Biological Education, 33(2), 84-86. https://doi.org/10.1080/00219266.1999.9655648

Banet, E., & Ayuso E. (2000). Teaching Genetics at Secondary School: A Strategy for Teaching about the Location of Inheritance Information. Science Education, 84(3), 313-351. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<313::AID-SCE2>3.0.CO;2-N

Bugallo, A. (1995). La didáctica de la genética: revisión bibliográfica. Enseñanza de las Ciencias, 13(3), 379-385. https://doi.org/10.5565/rev/ensciencias.4258

Caballero, M. (2008). Algunas ideas del alumnado de secundaria sobre conceptos básicos de genética. Enseñanza de las Ciencias, 26(2), 227-243. https://doi:10.5565/rev/ensciencias.3677

Castro-Faix, M., Duncan, R., & Choi, J. (2021). Data-driven refinements of a genetics learning progression. Journal of Research in Science Teaching, 58(1), 3–39. https://doi.org/10.1002/tea.21631

Clement, J., & Brown, D. (2009). Using analogies and models in instruction to deal with students’ preconceptions. In J. Clement (Ed.), Creative model construction in scientist and students. The role of imagery, analogy and mental simulation (pp. 139-155). Dordrecht, Netherlands: Springer.

https://doi.org/10.1007/978-1-4020-6712-9_10

Coll, R., & Lajium, D. (2011). Modeling and the future of science learning. In M. Khine & I. Saleh (Eds.), Models and modeling. Cognitive tools for scientific enquiry (pp. 3-22). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-007-0449-7_1

Contessa, G. (2007), Scientific representation, interpretation, and surrogative reasoning. Philosophy of Science, 74(1), 48-68. https://doi.org/10.1086/519478

diSessa, A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2-3), 105-225. https://doi.org/10.1080/07370008.1985.9649008

diSessa, A. (2014), The construction of causal schemes: learning mechanisms at the knowledge level. Cognitive Science, 38(5), 795-850. https://doi.org/10.1111/cogs.12131

Duncan, R., & Reiser, B. (2007). Reasoning across ontologically distinct levels: students’ understandings of molecular genetics. Journal of Research in Science Teaching, 44(7), 938-959. https://doi.org/10.1002/tea.20186

Duncan, R., Rogat, A., & Yarder, A. (2009). A learning progression for deepening students’ understandings of modern genetics across the 5th-10th grades. Journal of Research in Science Teaching, 46(6), 655-674. https://doi.org/10.1002/tea.20312

Escuela Nacional Preparatoria (ENP). (2017). Programa de estudios de la asignatura de Biología V, Universidad Nacional Autónoma de México, Ciudad de México, México. Recuperado de https://www.dgire.unam.mx/webdgire/planes-de-estudio-y-programas-operativos/plan-y-programas-indicativos-escuela-nacional-preparatoria/

Estébanez-Alonso, J. (2014). Análisis de los conocimientos e ideas previas sobre genética de alumnos que comienzan 4° de ESO comparados con los alumnos de 1° de bachillerato. (Tesis de maestría). Universidad Internacional de La Rioja. Madrid. España. Recuperado de https://reunir.unir.net/handle/123456789/2648

Flores-Camacho F. & Gallegos-Cázares L. (1998). Partial Possible Models: An approach to interpret students’ physical representation. Science Education, 82, 15-29. https://doi.org/10.1002/(SICI)1098-237X(199801)82:1<15::AID-SCE2>3.0.CO;2-3

Flores-Camacho, F., García-Rivera, B. E., Báez-Islas, A., & Gallegos-Cázares, L. (2017). Diseño y Validación de un Instrumento para Analizar las Representaciones Externas de Estudiantes de Bachillerato sobre Genética. Revista Iberoamericana De Evaluación Educativa, 10(2). https://doi.org/10.15366/riee2017.10.2.008

Flores-Camacho, F., Calderón-Canales, E., García-Rivera, B., Gallegos-Cázares, L., & Báez-Islas, A. (2021). Representational Trajectories in the Understanding of Mendelian Genetics. Journal of Mathematics, Science and Technology Education, 17(8), https://doi.org/10.29333/ejmste/10998

Gericke, N., & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understanding of genetics. Science & Education, 16, 849–881. https://doi.org/10.1007/s11191-006-9064-4

Gallegos-Cázares, L., Flores-Camacho, F., Calderón-Canales, E., Perrusquía-Máximo, E. & García-Rivera, B. (2014). Children’s models about colours in nahuatl-speaking communities. Research in Science Education, 44, 699-725. https://doi:10.1007/s11165-014-9399-9

Gallegos-Cázares, L., Flores-Camacho, F., Calderón-Canales E. & Posada, J. (2017). Representations over the earth’s shape and the process of day and night from Nahua indigenous schoolchildren, Infancia y Aprendizaje, 40(2), 343-380. https://doi:10.1080/02103702.2017.1292683

Gilbert, S. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79. https://doi.org/10.1002/tea.3660280107

Gilbert, J., Boulter, C., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. Gilbert & C. Boulter (Eds.), Developing models in science education, (pp. 3-17). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-010-0876-1_1

Gilbert, J., & Justi, R. (2016). Modelling-based teaching in science education. In J. Gilbert (Ed.), Models and modeling in Science Education, (pp. 41-56). Basel, Switzerland: Springer https://doi.org/10.1007/978-3-319-29039-3

Gutiérrez, R. (2005). Polisemia actual del concepto “modelo mental”: Consecuencias para la investigación didáctica, Investigações em Ensino de Ciências, 10(2), 209-226. Recuperado de https://ienci.if.ufrgs.br/index.php/ienci/article/view/517

Hackling, M., & Treagust, D. (1984). Research data necessary for meaningful review of grade ten high school genetics curricula. Journal of Research in Science Teaching, 21(2), 197-209. https://doi.org/10.1002/tea.3660210210

Hadenfeldt, J., Neumann, K., Bernholt, S., Liu, X., & Parchmann, I. (2016). Students' progression in understanding the matter concept. Journal of Research in Science Teaching, 53(5), 683–708. https://doi.org/10.1002/tea.21312

Halloun, I. (2004). Modeling theory in science education. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/1-4020-2140-2

Harrison, A., & Treagust, D. (2000). A typology of school science models, International Journal of Science Education, 22(9), 1011-1026. https://doi.org/10.1080/095006900416884

Haskel-Ittah, M., & Yarden, A. (2018). Students’ Conception of Genetic Phenomena and Its Effect on Their Ability to Understand the Underlying Mechanism. CBE Life Sciences Education 17(3), 1-9. https://doi.org/10.1187/cbe.18-01-0014

Ibáñez, T., & Martínez, M. (2005). Solving problems in genetic II: Conceptual restructuring. International Journal of Science Education, 27(12), 1495-1519. https://doi.org/10.1080/09500690500186584

Iñiguez, F. (2005). La enseñanza de la genética, una propuesta didáctica para la educación secundaria obligatoria desde una perspectiva constructivista. (Tesis de doctorado). Universidad de Barcelona. Barcelona. España. Recuperado de http://hdl.handle.net/2445/41444

Iñiguez, F., & Puigcerver, M. (2013). Una propuesta didáctica para la enseñanza de la genética en la educación secundaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10(3),307-327. Recuperado de http://hdl.handle.net/10498/15441

Jalmo, T., & Suwandi, T. (2018). Biology education students’ mental models on genetic concepts. Journal of Baltic Science Education,17(3), 474-485. https://doi.org/10.33225/jbse/18.17.474

Johnson-Laird, P. (1983). Mental models, Cambridge, Massachusetts, United States of America: Harvard University Press.

Kiliç, D., & Sağlam, N. (2014). Students’ understanding of genetics concepts: the effect of reasoning ability and learning approaches, Journal of Biological Education, 48(2), 63-70.

https://doi.org/10.1080/00219266.2013.837402

Kinnear, J. (1983). Identification of misconceptions in genetics and the use of computer simulations in their correction. In H. Helms & J. Novak (Eds.), Proceedings of the International Seminar on Misconceptions in Science and Mathematics, (pp. 84-92), Ithaca, New York, United States of America: Cornell University.

Knippels, M., Waarlo A., & Boersma, K. (2005) Design criteria for learning and teaching genetics, Journal of Biological Education, 39(3), 108-112. https://doi.org/10.1080/00219266.2005.9655976

Knuuttila, T. (2011). Modelling and representing: an artefactual approach to model-based representation. Studies in History and Philosophy of Science, 42(2), 262-271. https://doi.org/10.1016/j.shpsa.2010.11.034

Legarralde, T., Gallarreta, S., Vilches, A., & Menconi, F. (2014). Representaciones sobre el concepto de “gameta” en futuros profesores de Biología. El papel de los libros de texto. Revista de Educación en Biología, 17(1), 55-69. Recuperado de http://sedici.unlp.edu.ar/handle/10915/127441

Lewis, J., Leach, J., & Wood-Robinson, C. (2000a), All in the genes? Young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 74-79. https://doi.org/10.1080/00219266.2000.9655689

Lewis, J., Leach, J., & Wood-Robinson, C. (2000b). Chromosomes: The missing link. Young people’s understanding of Mitosis, Meiosis, and Fertilization. Journal of Biological Education, 34(4), 89-199. https://doi.org/10.1080/00219266.2000.9655717

Lewis, J., Leach, J., & Wood-Robinson, C. (2000c). What’s in a Cell? Young people’s understanding of the Genetic relationship between Cells, within an individual. Journal of Biological Education, 34(3), 129-132. https://doi.org/10.1080/00219266.2000.9655702

Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: re-visiting students’ understandings of genetics. International Journal of Science Education, 26(2), 195-206. https://doi.org/10.1080/0950069032000072782

Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance: do students see any relationship? International Journal of Science Education, 22(2), 177-195. https://doi.org/10.1080/095006900289949

Marbach-Ad, G., Rotbain, Y., & Stavy, Ruth. (2008). Using computer animation and illustration to improve High School students’ achievement in Molecular Genetics. Journal of Research in Science Teaching, 45(3), 273-292. https://doi.org/10.1002/tea.20222

Martins, I., & Ogborn, J. (1997). Metaphorical reasoning about genetics. International Journal of Science Education, 17(1), 47-63. https://doi.org/10.1080/0950069970190104

Mills-Shaw, K., Van Horne, K., Zhang, H., & Boughman, J. (2008). Essay contest reveals misconceptions of high school students in genetics content. Genetics, 178(3), 1157-1168. https://doi.org/10.1534/genetics.107.084194

Muela, F., & Abril, A. (2014). Genetics and Cinema: Personal Misconceptions that Constitute obstacles to Learning. International Journal of Science Education, Part B: Communication and Public Engagement, 4(3), 260-280. https://doi.org/10.1080/21548455.2013.817026

Nersessian, N. (2013). Mental modeling in conceptual change. In S. Vosniadou (Ed.), International Handbook of Research in Conceptual Change, (pp. 395-411), New York, United States of America: Routledge. https://doi:10.1007/s11191-010-9283-6

Pozo, J., & Flores, F. (2007), Cambio conceptual y representacional en el aprendizaje y la enseñanza de la ciencia, Madrid, España: Antonio Machado Libros

Prain, V., & Tytler, R. (2012). Learning through constructing representations in science: a framework of representational construction affordances, International Journal of Science Education, 34(17), 2751-2773. https://doi.org/10.1080/09500693.2011.626462

Rosária, J. (2006). La enseñanza de ciencias basada en la elaboración de modelos. Enseñanza de las ciencias, 24(2), 173-184. Recuperado de https://www.raco.cat/index.php/ensenanza/article/view/75824

Rotbain, Y., Marbach-Ad, G., & Stavy, R. (2006). Effect of bead and illustrations models on High School students’ achievement in Molecular Genetics. Journal of Research in Science Teaching, 43(5), 500-529. https://doi.org/10.1002/tea.20144

Saka, A., Cerrah, L., Akdeniz, A., & Ayas, A. (2006). A Cross-age study of the understanding of three genetic concepts: How do they image the gene, DNA and chromosome? Journal of Science Education and Technology, 15(2), 192-202. https://doi.org/10.1007/s10956-006-9006-6

Sensevy, G., Tiberghien, A., Sylvain, J., & Griggs, P. (2007). An Epistemological Approach to Modeling: Cases Studies and Implications for Science Teaching. Science Education, 92(3), 424-446. https://doi.org/10.1002/sce.20268

Shea, N., & Duncan, R. (2013). From theory to data: The process of refining learning progressions. Journal of the Learning Sciences, 22(1), 7–32. https://doi.org/10.1080/10508406.2012.691924

Sigüenza, A. (2000). Formación de modelos mentales en la resolución de problemas de genética. Enseñanza de las ciencias, 18(3), 439-450. https://doi.org/10.5565/rev/ensciencias.4030

Southard, K., Wince, T., Meddleton, S., & Bolger, M. S. (2016). Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms. CBE Life Sciences Education, 15(1), ar7. https://doi.org/10.1187/cbe.15-05-0114

Stewart, J. (1982). Difficulties experienced by High School students when learning basic Mendelian Genetics. The American Biology Teacher, 44(2), 80-89. https://doi.org/10.2307/4447413

Stewart, J., Cartier, J., & Passmore, C. (2005). Developing understanding through model-based inquiry. In S. Donovan & J. Bransford (Eds.), How students learn: History, mathematics, and science in the classroom, (pp. 515-565), Washington, DC, United States of America: The National Academies Press.

Strauss, A., & Corbin, J. (2002). Bases de la investigación cualitativa: técnicas y procedimientos para desarrollar la teoría fundada. Medellín, Colombia: Editorial Universidad de Antioquia.

Svoboda, J., & Passmore, C. (2013). The Strategies of Modeling on Biology Education. Science Education, 22, 119-142. https://doi.org/10.1007/s11191-011-9425-5

Thörne, K., Gericke, N., & Hagberg, M. (2013). Linguistic challenges in Mendelian genetics: Teachers’ talk in action. Science Education, 97(5), 695-722. https://doi.org/10.1002/sce.21075

Todd, A., & Romine, W. L. (2016). Validation of the learning progression-based assessment of modern genetics in a college context. International Journal of Science Education, 38(10), 1673–1698. https://doi.org/10.1080/09500693.2016.1212425

Todd, A., & Romine, W. L. (2017). Empirical validation of a modern genetics progression web for college biology students. International Journal of Science Education, 39, 488–505. https://doi.org/10.1080/09500693.2017.1296207

Todd, A., Romine, W., & Correa-Menendez, J. (2019). Modeling the transition from a phenotypic to genotypic conceptualization of genetics in a university-level introductory biology context. Research in Science Education, 49(2), 569–589. https://doi.org/10.1007/s11165-017-9626-2

Todd, A., Romine, W., Sadeghi, R., Cook Whitt, K., & Banerjee, T. (2022). How do high school students' genetics progression networks change due to genetics instruction and how do they stabilize years after instruction? Journal of Research in Science Teaching, 59(5), 779–807. https://doi.org/10.1002/tea.21744

Venville, G., & Treagust, D. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 34(9), 1031-1055. https://doi.org/10.1002/(SICI)1098-2736(199811)35:9<1031::AID-TEA5>3.0.CO;2-E

Venville, G., & Donovan, J. (2005). An Exploration of Young Children’s Understandings of Genetics Concepts from Ontological and Epistemological Perspectives. Science Education, 89(4), 614-633. https://doi.org/10.1002/sce.20061

Chu, Y. C. (2008). Learning Difficulties in Genetics and the Development of Related Attitudes in Taiwanese Junior High Schools. (Tesis de doctorado). University of Glasgow, Scotland. Reino Unido. Recuperada de: https://theses.gla.ac.uk/168/

Published

2023-12-28

How to Cite

García-Rivera, B. E., Gallegos-Cázares, L., Flores-Camacho, F., & Báez Islas, A. (2023). Possible Partial Models of genetic inheritance in high school students. Investigations in Science Education, 28(3), 148–169. https://doi.org/10.22600/1518-8795.ienci2023v28n3p148