Experiences of Scientific Thinking in Physics Classrooms
DOI:
https://doi.org/10.22600/1518-8795.ienci2018v23n1p266Keywords:
scientific thinking, experiences, reasoning strategies, learning group, Tutorials in IntroductoryAbstract
There is a contemporary demand on STEM education to support learning experiences in which students use scientific thinking to solve tasks. Scientific thinking involves domain-specific knowledge and general domain strategies of thinking. The object of interest in this research was the set of students’ experiences of scientific thinking in which they articulate domain-general strategies and domain-specific knowledge to solve physics tasks. Our goal was to characterize the experiences of scientific thinking of two groups of four students engaged in tasks about Newtonian Mechanics. The volunteers were 19 students, 15-17 years old, enrolled in electronics or computer science courses (11th grade) of a Brazilian vocational high school at Belo Horizonte/Minas Gerais. All class activities proposed to the students have been regularly used since 2010, therefore, we made no special intervention to conduct the study. Data collection occurred during the classes and involved audio and video recordings of students working in group; field notes; and photographs of students’ notebooks and of the posters they made to conduct oral presentations. The choice of the groups was based on how assiduous the members were. We have transcribed episodes in which we identified experiences of scientific thinking. These transcriptions, the field notes and the photographs were analyzed together, in interaction with each other. Data analysis is based upon John Dewey’s Theory of Experience. Our results show that the experiences of scientific thinking of the two groups were educative experiences, although qualitatively different. This difference was due to the way students interacted with the conditions given to solve the tasks. Additional information is given about the school circumstances in which the study was conducted to allow a better evaluation of results quality.References
AAAS. (1990). Science for all Americans: Project 2061. New York: Oxford University Press. Retrieved from http://www.project2061.org/publications/sfaa/default.htm
Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). TThe nature of science and instructional practice: Making the unnatural natural. Science Education, 82, 417–436. DOI: 10.1002/(SICI)1098-237X(199807)82:4<417::AID-SCE1>3.0.CO;2-E
Al-Ahmadi, F. M. A., & Reid, N. (2011). Scientific thinking. What is it and can it be measured? Revista de Educación en Ciencias, 12(5), 53–59.
Almudi, J. M., & Ceberio, M. (2015). Analysis of arguments constructed by first-year engineering students addressing electromagnetic induction problems. International Journal of Science and Mathematics Education, 13 (supl. 1) 215-236. DOI: 10.1007/s10763-014-9528-y
Arons, A. B. (1996). Teaching Introductory Physics. Teaching Introductory Physics. New York: John Wiley & Sons.
Bailin, S. (2002). Critical Thinking and Science Education. Science & Education, 11, 361–375. DOI: 10.1023/A:1016042608621
Banner, I., & Ryder, J. (2014). The impact of a context-led curriculum on differente students’ experiences of school science. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), Topics and Trends in Current Science Education - 9th ESERA Conference Selected Contributions (pp. 369–384). London: Springer.
Bardin, L. (1977). Análise de Conteúdo. Lisboa: Edições 70. DOI: 10.1017/CBO9781107415324.004
Barron, B. (2003). When Smart Groups Fail. Journal of the Learning Sciences, 12(3), 307–359. DOI: 10.1207/S15327809JLS1203_1
Bellucco, A., & Carvalho, A. M. P. de. (2014). Uma proposta de sequência de ensino investigativa sobre quantidade de movimento , sua conservação e as leis de Newton. Caderno Brasileiro de Ensino de Fisica, 31(1), 30–59.
Benegas, J. (2007). Tutoriales para Física Introductoria : Una experiencia exitosa de Aprendizaje Activo de la Física. Latin-American Journal of Physics Education, 1(1), 32–38.
Benegas, J., & Flores, J. S. (2014). Effectiveness of Tutorials for Introductory Physics in Argentinean high schools. Physical Review Special Topics - Physics Education Research, 10(1), 1–10. DOI: 10.1103/PhysRevSTPER.10.010110
Bereiter, C., & Scardamalia, M. (1996). Rethinking Learning. In Olson, D. R. & Torrance, N. (Eds.), The handbook of education and human development: New models of learning, teaching, and schooling (pp. 485–513). Cambridge: Blackwell.
Borges, A. T., & Gomes, A. D. T. (2005). Percepção de estudantes sobre desenhos de testes experimentais. Caderno Brasileiro de Ensino de Fisica, 22(1), 72–95.
Borges, O. (2006). Formação inicial de professores de Física: Formar mais! Formar melhor! Revista Brasileira de Ensino de Física, 28(2), 135–142.
Borges, O. N., Borges, A. T., & Vaz, A. M. (2005). Os planos dos estudantes para resolver problemas práticos. Revista Brasileira de Ensino de Física, 27(3), 435–446.
Branco, M. L. (2010). O sentido da educação democrática : revisitando o conceito de experiência educativa em John Dewey. Educação e Pesquisa, 36(2), 599–610.
BRASIL. Diretrizes Curriculares Nacionais da Educação Básica (2013). Retrieved from http://portal.mec.gov.br/docman/julho-2013-pdf/13677-diretrizes-educacao-basica-2013-pdf/file
Bulgren, J. a., Ellis, J. D., & Marquis, J. G. (2013). The Use and Effectiveness of an Argumentation and Evaluation Intervention in Science Classes. Journal of Science Education and Technology, 23(1), 82–97. DOI: 10.1007/s10956-013-9452-x
Choi, A., Hand, B., & Greenbowe, T. (2012). Students’ Written Arguments in General Chemistry Laboratory Investigations. Research in Science Education, 43(5), 1763–1783. DOI: 10.1007/s11165-012-9330-1
Cole, M. (1996). Cultural Psychology - A once and future discipline. Cambridge: Harvard University Press.
Cruz, E., O’Shea, B., Schaffenberger, W., Wolf, S., & Kortemeyer, G. (2010). Tutorials in Introductory Physics: The Pain and the Gain. The Physics Teacher, 48(7), 453–457. Retrieved from http://link.aip.org/link/PHTEAH/v48/i7/p453/s1&Agg=doi
Dewey, J. (1966). Democracy and Education (30th ed.). New York: Free Press.
Dewey, J. (1997). Experience and Education. New York: Touchstone.
Dewey, J. (2010). Arte como Experiência (1a). São Paulo: Martins Fontes.
Ding, L., Wei, X., & Mollohan, K. (2014). Does Higher Education Improve Student Scientific Reasoning Skills? International Journal of Science and Mathematics Education, (Dec). DOI: 10.1007/s10763-014-9597-y
Dunbar, K., & Fugelsang, J. (2005). Scientific Thinking and Reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge Handbook of Thinking and Reasoning (pp. 705–725). Cambridge: Cambridge University Press.
Dunbar, K. N., & Klahr, D. (2012). Scientific Thinking and Reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford Handbook of Thinking and Reasoning (pp. 701–718). New York: Oxford University Press.
Faria, A. F. (2008). Engajamento de Estudantes em Atividade de Investigação. Universidade Federal de Minas Gerais. Retrieved from http://dspace.lcc.ufmg.br/dspace/bitstream/1843/FAEC-84XHTF/1/dissertacao_faria_a_f.pdf
Faria, A. F. (2016). Investigação de experiências de pensamento científico de estudantes em tarefas de física em grupo. Tese de Doutorado. Universidade Federal de Minas Gerais. Retrieved from https://www.researchgate.net/publication/305173831
Faria, A. F., & Vaz, A. M. (2017). Pensamento Científico Empregado Em Tarefas De Física Básica. Investigações Em Ensino de Ciências, 22(1), 162. DOI: 10.22600/1518-8795.ienci2017v22n1p162
Fensham, P. J. (2012). The challenge of generic competences to science education. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), Proceedings of the ESERA 2011 Conference: Science learning and Citizenship (pp. 7–14). Lyon: ESERA. Retrieved from http://www.esera.org/media/ebook/strand9/ebook-esera2011_FENSHAM-09.pdf
Finkelstein, N., & Pollock, S. (2005). Replicating and understanding successful innovations: Implementing tutorials in introductory physics. Physical Review Special Topics - Physics Education Research, 1(1), 1–13. Retrieved from DOI: 10.1103/PhysRevSTPER.1.010101
Flores, J. S., & Benegas, J. (2008). Aprendizaje de circuitos eléctricos en el nivel polimodal: Resultados de distintas aproximaciones didácticas. Enseñanza de Las Ciencias, 26(2), 245–256.
Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School Engagement: Potential of the Concept, State of the Evidence. Review of Educational Research, 74(1), 59–109. Retrieved from DOI: 10.3102/00346543074001059
Freire, P. (1996). Pedagogia da Autonomia: Saberes necessários à prática docente. São Paulo: Paz e Terra.
Frydenberg, E., Ainley, M., & Russell, V. J. (2005). Student Motivation and Engagement. Canberra.
Gil-Pérez, D., Montoro, I. F., Alís, J. C., Cachapuz, A. F. C., & Praia, J. F. (2001). Para uma imagem não deformada do trabalho cientifico. Ciência & Educação (Bauru), 7(2), 125–153.
Glassman, M. (2001). Dewey and Vygotsky: Society, Experience, and Inquiry in Educational Practice. Educational Researcher, 30(4), 3–14. Retrieved from DOI: 10.3102/0013189X030004003
Gunstone, R., & Watts, M. (1985). Force and Motion. In R. Driver, G. Tiberghien, & A. Tiberghien (Eds.), Children’s Ideas in Science (pp. 85–104). Milton Keynes: Open University Press.
Havdala, R., & Ashkenazi, G. (2007). Coordination of Theory and Evidence: Effect of epistemological theories on students’ laboratory practice. Journal of Research in Science Teaching, 44(8), 1134–1159.
Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force Concept Inventory. The Physics Teacher, 30 (Março), 141–158.
Hodson, D. (1985). Philosophy of Science, Science and Science Education. Studies in Science Education, (12), 25–57.
Hodson, D. (1986). Philosophy of science and science education. Journal of Philosophy of Education, 20(2), 215–225.
Hodson, D., & Wong, S. L. (2014). From the Horse’s Mouth: Why scientists’ views are crucial to nature of science understanding. International Journal of Science Education, 36(16), 1–27. DOI: 10.1080/09500693.2014.927936
Howes, E. V. (2008). Educative experiences and early childhood science education: A Deweyan perspective on learning to observe. Teaching and Teacher Education, 24(3), 536–549. DOI: 10.1016/j.tate.2007.03.006
Iordanou, K., & Constantinou, C. P. (2015). Supporting Use of Evidence in Argumentation Through Practice in Argumentation and Reflection in the Context of SOCRATES Learning Environment. Science Education, 99(2), 282–311. DOI: 10.1002/sce.21152
Julio, J. M., & Vaz, A. M. (2007). Grupos de alunos como grupos de trabalho: um estudo sobre atividades de investigação. Revista Brasileira de Pesquisa em Educaçao em Ciências, 7(2).
Julio, J. M., Vaz, A. M., & Fagundes, A. (2011). Atenção: Alunos engajados - Análise de um grupo de aprendizagem em atividade de investigação. Ciência & Educação (Bauru), 17(1), 63–81. Retrieved from http://redalyc.uaemex.mx/redalyc/pdf/2510/251019455005.pdf
Kanari, Z., & Millar, R. (2004). Reasoning from data: How students collect and interpret data in science investigations. Journal of Research in Science Teaching, 41(7), 748–769.
Kant, J. M., Scheiter, K., & Oschatz, K. (2017). How to sequence video modeling examples and inquiry tasks to foster scientific reasoning. Learning and Instruction, 1–13. DOI: 10.1016/j.learninstruc.2017.04.005
Kasseboehmer, A. C. método investigativo em aulas teóricas de Q. : estudo das condições da formação do espírito científicoa, & Ferreira, L. H. (2013). O método investigativo em aulas teóricas de Química: estudo das condições da formação do espírito científico. Revista Electrónica de Enseñanza de Las Ciencias, 12, 144–168.
Keller, C. J., Finkelstein, N. D., Perkins, K. K., & Pollock, S. J. (2005). Assessing the effectiveness of a computer simulation in conjunction with Tutorials in Introductory Physics in undergraduate physics recitations. In P. Heron, L. McCullough, & J. Marx (Eds.), Physics Education Research Conference Proceedings (pp. 109–112). Salt Lake: AIP.
Klahr, D., & Dunbar, K. (1988). Dual Space Search During Scientific Reasoning. Cognitive Science, 12(1), 1–48. DOI: 10.1207/s15516709cog1201_1
Klahr, D., Zimmerman, C., & Jirout, J. (2011). Educational interventions to advance children’s scientific thinking. Science, 333(6045), 971–975. DOI: 10.1126/science.1204528
Kruckeberg, R. (2006). A Deweyan Perspective on Science Education: Constructivism, Experience, and Why We Learn Science. Science & Education, 15(1), 1–30. Retrieved from DOI: 10.1007/s11191-004-4812-9
Kuhn, D., Amsel, E., & O’Loughlin, M. (1988). The Development of Scientific Thinking Skills. San Diego: Academic Press.
Kuhn, D., & Pearsall, S. (2000). Developmental Origins of Scientific Thinking. Journal of Cognition and Development, 1(1), 113–129. DOI: 10.1207/S15327647JCD0101N_11
Kulatunga, U., Moog, R. S., & Lewis, J. E. (2013). Argumentation and participation patterns in general chemistry peer-led sessions. Journal of Research in Science Teaching, 50(10), 1207–1231. DOI: 10.1002/tea.21107
Lai, E. R. (2011). Critical Thinking : A Literature Review. Pearson’s Research Reports, 6.
Lawson, A. E. (1978). The development and validation of a classroom test of formal reasoning. Journal of Research in Science Teaching, 15(1), 11–24. DOI: 10.1002/tea.3660150103
Lawson, A. E. (1982). The nature of advanced reasoning and science instruction. Journal of Research in Science Teaching, 19(9), 743–760. DOI: 10.1002/tea.3660190904
Lawson, A. E. (2010). Basic inferences of scientific reasoning, argumentation, and discovery. Science Education, 94(2), 336–364. https://doi.org/10.1002/sce.20357
Lee, H. S., & Park, J. (2013). Deductive reasoning to teach newton ’ s law of motion. International Journal of Science and Mathematics Education, 11, 1391–1414.
Lin, S. (2014). Science and non-science undergraduate students ’ critical thinking and argumentation performance in reading a science news report. International Journal of Science and Mathematics Education, 12, 1023–1046.
Locatelli, R. J., & Carvalho, A. M. P. (2007). Uma análise do raciocínio utilizado pelos alunos ao resolverem os problemas propostos nas atividades de conhecimento físico. Revista Brasileira de Pesquisa em Educaçao em Ciências, 7(3), 1–18.
Lorenzo, M., Crouch, C. H., & Mazur, E. (2006). Reducing the gender gap in the physics classroom. American Journal of Physics, 74(2), 118–122. Retrieved from http://link.aip.org/link/AJPIAS/v74/i2/p118/s1&Agg=doi
Loverude, M. E., Kautz, C. H., & Heron, P. R. L. (2003). Helping students develop an understanding of Archimedes’ principle. I. Research on student understanding. American Journal of Physics, 71(11), 1178–1187.
Maia, P. F., & Justi, R. (2008). Desenvolvimento de habilidades no Ensino de Ciências e o processo de avaliação: Análise da coerência. Ciência & Educação, 14(3), 431–450.
Mansilla, V. B., & Jackson, A. (2011). Educating for Global Competence: Preparing Our Youth to Engage the World. New York: Asia Society.
Maruši?, M., & Sliško, J. (2012). Influence of Three Different Methods of Teaching Physics on the Gain in Students’ Development of Reasoning. International Journal of Science Education, 34(2), 301–326. DOI: 10.1080/09500693.2011.582522
Mashood, K. K., & Singh, V. A. (2013). Large-scale studies on the transferability of general problem-solving skills and the pedagogic potential of physics. Physics Education, 48(5), 629–635. DOI: 10.1088/0031-9120/48/5/629
Maurines, L. (2010). Geometrical Reasoning in Wave Situations: The case of light diffraction and coherent illumination optical imaging. International Journal of Science Education, 32(14), 1895–1926. DOI: 10.1080/09500690903271389
McComas, W. F. (Ed.). (2002). The Nature of Science in Science Education - Rationales and Strategies. New York: Kluwer Academic Publishers.
McDermott, L. C., & Shaffer, P. S. (1998). Tutorials in Introductory Physics - Preliminary Edition. Upper Saddle River: Prentice Hall.
Mendonça, P. C. C., & Justi, R. (2006). Analogias sobre ligações químicas elaboradas por alunos do ensino médio. Revista Brasileira de Pesquisa em Educação em Ciências, 6(1), 22–34.
Millar, R., & Lubben, F. (1996). Knowledge and Action: Students’ Understanding of the Procedures of Scientific Enquiry. In G. Weldford, J. Osborne, & P. Scott (Eds.), Research in Science and Education in Europe (pp. 166–173). London: Falmer Press.
Milne, C., & Otieno, T. (2007). Understanding engagement: Science demonstrations and emotional energy. Science Education, 91(4), 523–553. DOI: 10.1002/sce.20203
Moraes, R. (1999). Análise de Conteúdo. Revista Educação, 22(37), 7–32.
Mortimer, E. F., Massicame, T., Tiberghien, A., & Buty, C. (2007). Uma metodologia para caracterizar os gêneros de discurso como tipos de estratégias enunciativas nas aulas de Ciências. In R. Nardi (Ed.), A pesquisa em Ensino de Ciências no Brasil: Alguns Recortes (1st ed., pp. 53–94). São Paulo: Escrituras.
Mulder, Y. G., Lazonder, A. W., & de Jong, T. (2010). Finding Out How They Find It Out: An empirical analysis of inquiry learners’ need for support. International Journal of Science Education, 32(15), 2033–2053. DOI: 10.1080/09500690903289993
Murphy, P. K., Firetto, C. M., & Greene, J. A. (2017). Enriching Students’ Scientific Thinking Through Relational Reasoning: Seeking Evidence in Texts, Tasks, and Talk. Educational Psychology Review, 29(1), 105–117. DOI: 10.1007/s10648-016-9387-x
Na, J., & Song, J. (2013). Why Everyday Experience? Interpreting Primary Students’ Science Discourse from the Perspective of John Dewey. Science & Education, 23(5), 1031–1049. DOI: 10.1007/s11191-013-9637-y
NRC. (2013). Next Generation Science Standards. Retrieved from http://www.nextgenscience.org/
Olson, D. R., & Bruner, J. S. (1996). Folk Psychology and Folk Pedagogy. In D. R. Olson & N. Torrance (Eds.), The handbook of education and human development: New models of learning, teaching, and schooling (pp. 9–27). Cambridge: Blackwell.
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020. DOI: 10.1002/tea.20035
Osborne, J., Simon, S., Christodoulou, A., Howell-Richardson, C., & Richardson, K. (2013). Learning to argue: A study of four schools and their attempt to develop the use of argumentation as a common instructional practice and its impact on students. Journal of Research in Science Teaching, 50(3), 315–347. DOI: 10.1002/tea.21073
Paula, H. de F. e, & Borges, A. T. (2007). Avaliação e testes de explicações na Educação em Ciências. Ciência & Educação, 13(2), 175–192.
PEG/UW. (2013). Preface to Tutorials in Introductory Physics. Retrieved May 25, 2013, from http://depts.washington.edu/uwpeg/tutorial/preface
Piekny, J., Grube, D., & Maehler, C. (2014). The Development of Experimentation and Evidence Evaluation Skills at Preschool Age. International Journal of Science Education, 36(2), 334–354. DOI: 10.1080/09500693.2013.776192
Pollock, S. J. (2005). No Single Cause: Learning Gains, Student Attitudes, and the Impacts of Multiple Effective Reforms. In AIP Conference Proceedings (Vol. 790, pp. 137–140). Aip. Retrieved from http://link.aip.org/link/?APC/790/137/1&Agg=doi
Pollock, S. J., Finkelstein, N. D., & Kost, L. E. (2007). Reducing the gender gap in the physics classroom: How sufficient is interactive engagement? Physical Review Special Topics - Physics Education Research, 3(1), 1–4. Retrieved from http://link.aps.org/doi/10.1103/PhysRevSTPER.3.010107
Postholm, M. B. (2008). Cultural historical activity theory and Dewey ’ s idea-based social constructivism : Consequences for Educational Research. Critical Social Studies, (1), 37–48.
Pozo, J. I., & Crespo, M. Á. G. (2009). A aquisição de procedimentos - Aprendendo a aprender e a fazer ciência. In A aprendizagem e o Ensino de Ciencias - Do conhecimento cotidiano ao conhecimento cientifico (5th ed., pp. 46–76). Porto Alegre: Artmed.
Praia, J. F., Cachapuz, A. F. C., & Gil-Pérez, D. (2002). Problema, Teoria e Observação em Ciência : Para uma reorientação epistemológica da educação em ciência. Ciência & Educação, 8(1), 127–145. DOI: 10.1590/S1516-73132002000100010
Pugh, K. J. (2004). Newton’s laws beyond the classroom walls. Science Education, 88(2), 182–196. DOI: 10.1002/sce.10109
Pugh, K. J., Linnenbrink-Garcia, L., Koskey, K. L. K., Stewart, V. C., & Manzey, C. (2009). Motivation, learning, and transformative experience: A study of deep engagement in science. Science Education, 94(1), 1–28. Retrieved from DOI: 10.1002/sce.20344
Ritchhart, R., & Perkins, D. N. (2005). Learning to Think : The Challenges of Teaching Thinking. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge Handbook of Thinking and Reasoning (1st ed., pp. 775–802). New York: Cambridge University Press.
Rosa, P. R. da S. (2013). Uma Introduça O a Pesquisa Qualitativa em Ensino de Ciencias. Campo Grande: Universidade Federal de Mato Grosso do Sul.
Roth, W.-M., & Jornet, A. (2014). Toward a Theory of Experience. Science Education, 98(1), 106–126. DOI: 10.1002/sce.21085
Sampson, V., & Clark, D. (2009). The Impact of collaboration on the outcomes of scientific argumentation. Science Education, 93(3), 448–484. DOI: 10.1002/sce.20306
Schmidt, I. A. (2009). John Dewey e a educação para uma sociedade democrática. Contexto & Educação, (82), 135–154.
Schwab, J. J. (1959). The “Impossible” Role of the Teacher in Progressive Education. The School Review, 67(2), 139–159.
Shaffer, P. S., & McDermott, L. C. (2005). A research-based approach to improving student understanding of the vector nature of kinematical concepts. American Journal of Physics, 73(10), 921–931. Retrieved from http://link.aip.org/link/AJPIAS/v73/i10/p921/s1&Agg=doi
Sinatra, G. M., Heddy, B. C., & Lombardi, D. (2015). The Challenges of Defining and Measuring Student Engagement in Science. Educational Psychologist, 50(1), 1–13. Retrieved from DOI: 10.1080/00461520.2014.1002924#.VRWUy3Xd_CI
Slezak, C., Koenig, K. M., Endorf, R. J., & Braun, G. A. (2011). Investigating the Effectiveness of the Tutorials in Introductory Physics in Multiple Instructional Settings. Physical Review Special Topics - Physics Education Research, 7(2), 1–8.
Stephens, A. L., & Clement, J. J. (2010). Documenting the use of expert scientific reasoning processes by high school physics students. Physical Review Special Topics - Physics Education Research, 6(2), 1–15. DOI: 10.1103/PhysRevSTPER.6.020122
Taber, K. S., Ruthven, K., Mercer, N., Riga, F., Luthman, S., & Hofmann, R. (2016). Developing teaching with an explicit focus on scientific thinking. School Science Review, 97(361), 75–84.
Tang, X., Coffey, J. E., Elby, A., & Levin, D. M. (2010). The scientific method and scientific inquiry: Tensions in teaching and learning. Science Education, 94(1), 29–47. DOI: 10.1002/sce.20366
Tuyarot, D. E., & Eiras, W. da C. S. (2011). Investigando os “Tutoriais em Física Introdutória” no Ensino Médio. In XIX Simpósio Nacional de Ensino de Física (pp. 1–10). Manaus: SBF.
Tytler, R., & Peterson, S. (2003). Tracing Young Children’s Scientific Reasoning. Research in Science Education, 33(4), 433–465. DOI: 10.1023/B:RISE.0000005250.04426.67
Valanides, N., Papageorgiou, M., & Angeli, C. (2013). Scientific Investigations of Elementary School Children. Journal of Science Education and Technology, 23(1), 26–36. DOI: 10.1007/s10956-013-9448-6
van der Graaf, J., Segers, E., & Verhoeven, L. (2016). Scientific reasoning in kindergarten: Cognitive factors in experimentation and evidence evaluation. Learning and Individual Differences, 49, 190–200. DOI: 10.1016/j.lindif.2016.06.006
Vieira, R. M., Tenreiro-vieira, C., & Martins, I. P. (2011). Critical thinking : Conceptual clarification and its importance in science education. Science Education International, 22(1), 43–54.
Waldrip, S., & Waldrip, B. (2014). Impact of a representational approach on students ’ reasoning and conceptual understanding in learning mechanics. International Journal of Science and Mathematics Education, 12, 741–765.
Yeo, J., & Gilbert, J. K. (2014). Constructing a Scientific Explanation—A Narrative Account. International Journal of Science Education, 36(11), 1902–1935. DOI: 10.1080/09500693.2014.880527
Yun, S. M., & Kim, H.-B. (2014). Changes in Students’ Participation and Small Group Norms in Scientific Argumentation. Research in Science Education, 465–484. DOI: 10.1007/s11165-014-9432-z
Zavala, G., Alarcón, H., & Benegas, J. (2007). Innovative Training of In-service Teachers for Active Learning: A Short Teacher Development Course Based on Physics Education Research. Journal of Science Teacher Education, 18(4), 559–572. DOI: 10.1007/s10972-007-9054-7
Zeineddin, A., & Abd-el-khalick, F. (2008). On Coordinating Theory with Evidence : The Role of Epistemic Commitments in Scientific Reasoning among College Students. Eurasia Journal of Mathematics, Science & Technology Education, 4(2), 153–168.
Zimmerman, C. (2000). The Development of Scientific Reasoning Skills. Developmental Review, 20(1), 99–149. Retrieved from http://linkinghub.elsevier.com/retrieve/doi/10.1006/drev.1999.0497
Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172–223. DOI: 10.1016/j.dr.2006.12.001
Downloads
Published
How to Cite
Issue
Section
License
IENCI is an Open Access journal, which does not have to pay any charges either for the submission or processing of articles. The journal has adopted the definition of the Budapest Open Access Initiative (BOAI), which states that the users have the right to read, write down, copy, distribute, print, conduct searches and make direct links with the complete texts of the published articles.
The author responsible for the submission represents all the authors of the work and when the article is sent to the journal, guarantees that he has the permission of his/her co-authors to do so. In the same way, he/she provides an assurance that the article does not infringe authors´ rights and that there are no signs of plagiarism in the work. The journal is not responsible for any opinions that are expressed.
All the articles are published with a Creative Commons License Attribution Non-commercial 4.0 International. The authors hold the copyright of their works and must be contacted directly if there is any commercial interest in the use of their works.