Tree-dimensional modeling: reflections of future chemistry teachers for teaching and learning of enzyme-substrate interaction

Authors

  • Joyce Fernandes Almeida Universidade Federal de Alfenas
  • Keila Bossolani-Kiill Universidade Federal de Alfenas

DOI:

https://doi.org/10.22600/1518-8795.ienci2019v24n3p282

Keywords:

chemical education, three-dimensional printing, learning strategies

Abstract

The students’ participation in tree-dimensional modeling activities in Science Education has been a topic not yet explored in researches. In this context, the research aimed to present and discuss the reflections of future chemistry teachers’ about the three-dimensional modeling process as a strategy for teaching and learning the enzyme-substrate interaction. For this, fifteen students of the 7º period of graduating in Chemistry carried out a sequence of scientific modeling steps proposed in the literature and adapted for tree-dimensional modeling. The information was generated through of drawings, interviews, personal reports and research diary, followed by transcription and thematic analysis. The results show that students' participation in tree-dimensional modeling activities made it possible to: (i) evidence a significant learning on the enzyme-substrate interaction; and (ii) contributions to teacher training. This study was done in order to enable reflection on the implications of the use of 3D printed models design in their future teaching practices. The study notes suggest that the tree-dimensional modeling process presented can guide teachers and researchers in practical activities to build knowledge in the classroom, above all, they can contribute to the discussions about the students participation in modeling activities.

Author Biographies

Joyce Fernandes Almeida, Universidade Federal de Alfenas

Grupo de Pesquisa em Educação Química. Área Educação Química.

Keila Bossolani-Kiill, Universidade Federal de Alfenas

Instituto de Química. Área de pesquisa: Educação Química

References

Abulia, M., Schroeder, L., Garcia, M., Daubenmire, P. L., Wink, D. J., & Clark, G. A. (2016). Connecting protein structure to intermolecular interactions: a computer modeling laboratory. Journal of Chemical Education, 93(8), 1353-1363. https://dx.doi.org/10.1021/acs.jchemed.5b00910

Almeida, J. F., & Kiill, K. B. (2019). Construção de Modelos 3D impressos como estratégia para a aprendizagem do conceito de interação enzima-substrato. Revista de Ensino de Bioquímica, 17(n. esp.), 74-93. Recuperado de http://bioquimica.org.br/revista/ojs/index.php/REB/article/view/P6/673

Barbosa, J. G., & Hess, R. (2010). O diário de pesquisa: o estudante universitário e seu processo formativo. Brasília, DF: Liberlivro (Série Pesquisa, 8).

Bardin, L. (2016). Análise de conteúdo. São Paulo, SP: Edições 70.

Blanco-Anaya, P., Justi, R., & Bustamante, J. D. (2017). Challenges and opportunities in analysing students modelling. International Journal of Science Education, 39(3), 377-402. https://dx.doi.org/10.1080/09500693.2017.1286408

Botas. D., & Moreira, D. A. (2013). A utilização de materiais didáticos nas aulas de matemática: um estudo no 1º ciclo. Revista Portuguesa de Educação, 26(1), 253-286. Recuperado de https://revistas.rcaap.pt/rpe/article/view/3259/2633

Brown, A. (2015). 3D Printing in Instructional settings: identifying a curricular hierarchy of activities. Association for Educational Communications and Technology, 59(5), 16-24. https://dx.doi.org/10.1007/s11528-015-0887-1

Calcabrini, M., & Onna, D. (2019). Exploring the gel state: optical determination of gelation times and transport properties of gels with an inexpensive 3D-printed spectrophotometer. Journal of Chemical Education, 96(1), 116-123. https://dx.doi.org/10.1021/acs.jchemed.8b00529

Canessa, E. (2013). Low-cost 3D printing for Science, Education and Sustainable Development. In E. Canessa, C. Fonda & M. Zennaro. (Eds.). Low-cost 3D printing. The abdus salam International centre for Theoretical Physics. Italy: ICTP. Recuperado de http://web.archive.org/web/20150407185109/http://sdu.ictp.it/3d/book/Low-cost_3D_printing_screen.pdf

Carlisle, D., Tyson, J., & Nieswandt, M. (2015). Fostering spatial skill acquisition by general chemistry students. Chemistry Education Research and Practice, 16(3), 478-517. https://dx.doi.org/10.1039/c4rp00228h

Carroll, F. A., & Blauch, D. N. (2017). 3D Printing of molecular models with calculated geometries and p orbital isosurfaces. Journal of Chemical Education, 94(7), 886-891. https://dx.doi.org/10.1021/acs.jchemed.6b00933

Cataldo, R., Griffith, K. M., & Fogarty, K. H. (2018). Hands-on hybridization: 3D-printed models of hybrid orbitals. Journal of Chemical Education, 95(9), 1591-1594. https://dx.doi.org/10.1021/acs.jchemed.8b00078

Creswell, J. W. (2014). Investigação qualitativa e projeto de pesquisa: escolhendo entre cinco abordagens (3a ed.). São Paulo, SP: Penso.

Ferreira, C. R., & Arroio, A. (2013). Visualizações no ensino de Química: concepções de professores em formação inicial. Química Nova na Escola, 35(3), 199-208. Recuperado de http://qnesc.sbq.org.br/online/qnesc35_3/09-PE-32-12.pdf

Fourches, D., & Feducia, J. (2019). Student-guided three-dimensional printing activity in large lecture courses: a practical guideline. Journal of Chemical Education, 96(2), 291-295. https://dx.doi.org/10.1021/acs.jchemed.8b00346

Flick, U. (2009). Métodos de Pesquisa: Introdução à Pesquisa Qualitativa (3a ed.). Porto Alegre, RS: Artmed.

Galembeck, E., & Filho, C. E. S. P. (2007). Enzyme. Biblioteca Digital de Ciências. Recuperado de https://www.bdc.ib.unicamp.br/bdc/visualizarMaterial.php?idMaterial=528

Galembeck, E., Filho, C. E. S. P., & Torres, B. B. (2007). A cinética da reação enzimática. Biblioteca Digital de Ciências. Recuperado de https://www.bdc.ib.unicamp.br/bdc/visualizarMaterial.php?idMaterial=527

Gerhardt, T. E., & Silveira, D. T. (2009). Métodos de pesquisa. Porto Alegre RS: Ufrgs. Recuperado de http://www.ufrgs.br/cursopgdr/downloadsSerie/derad005.pdf

Gilbert, J. K. (2004). Models and Modelling: routes to more authentic Science Education. International Journal of Science and Mathematics Education, 2(2), 115-130. https://dx.doi.org/10.1007/s10763-004-3186-4

Gilbert, J. K. (2013). Representations and models: aspects of Scientific literacy. In R. Tytler, P. Hubber, & B. Waldrip (Eds.). Constructing representations to learn in Science (193-198). Rotterdam, Netherlands: Sense Publishers. https://dx.doi.org/10.1007/978-94-6209-203-7

Gilbert, J. K. (2010). The role of visual representations in the learning and teaching of science: an introduction. Asia-Pacific Forum on Science Learning and Teaching, 11(1), 1-19. Recuperado de https://www.eduhk.hk/apfslt/download/v11_issue1_files/foreword.pdf

Gilbert, J. K. (2005). Visualization: a metacognitive skill in Science Education. In J. K. Gilbert (Ed.). Visualization in Science Education (9-27). Dordrecht, Netherlands: Springer. https://dx.doi.org/10.1007/1-4020-3613-2_2

Gilbert, J. K., & Treagust. (2009). Multiple representations in Chemical Education. International Journal of Science Education, 31(16), 2271-2273. https://dx.doi.org/10.1080/09500690903211393

Griffith, K. M., Cataldo, R., & Fogarty, K. H. (2016). Do-it-yourself: 3D models of hydrogenic orbitals through 3D printing. Journal of Chemical Education, 93(9), 1586-1590. https://dx.doi.org/10.1021/acs.jchemed.6b00293

Groppo, L. A., & Martins, M. F. (2006). Introdução à Pesquisa em Educação. São Paulo, SP: Biscalchin.

Jager, T. (2016). Perceived advantages of 3D lessons in constructive learning for South African student teachers encountering learning barriers. International Journal of Inclusive Education, 21(1), 90-102. https://dx.doi.org/10.1080/13603116.2016.1184329

Jiménez-Tenorio, N., Núñez, L. A., & Martínez, J. M. O. (2016). Percepciones de estudiantes para maestros de educación primaria sobre los modelos analógicos como recurso didático. Enseñanza de Las Ciencias, 34(3), 91-112. Recuperado de https://ddd.uab.cat/pub/edlc/edlc_a2016v34n3/edlc_a2016v34n3p91.pdf

Johnson-Laird, P. N. (1980). Mental Models in Cognitive Science. Cognitive Science, 4(1), 71 115. https://dx.doi.org/10.1207/s15516709cog0401_4

Justi, R. (2006). La enseñanza de ciências basada em la elaboración de modelos. Enseñanza de Las Ciencias, 24(2), 173-184. Recuperado de https://core.ac.uk/download/pdf/13271794.pdf

Justi, R. (2010). Modelos e Modelagem no Ensino de Química. In Santos, W. L. P., & Maldaner, O. A. Ensino de Química em Foco (209-230). Ijuí, RS: Unijui.

Justi, R. (2015). Relações entre argumentação e modelagem no contexto da ciência e do ensino de ciências. Revista Ensaio: Pesquisa em Educação em Ciências, Belo Horizonte, 17(n. esp.), 31-48. Recuperado de http://www.scielo.br/pdf/epec/v17nspe/1983-2117-epec-17-0s-00031.pdf

Justi, R., & Gilbert, J. K. (2003). Teachers' views on the nature of models. International Journal of Science Education, 25(11), 1369-1386. https://dx.doi.org/10.1080/0950069032000070324

Kaliakin, D. S., Zaari, R. R., & Varganov. (2015). 3D Printed potential and free energy surfaces for teaching fundamental concepts in Physical Chemistry. Journal of Chemical Education, 92(12), 2106-2112. https://dx.doi.org/10.1021/acs.jchemed.5b00409

Kondinski, A., & Parac-Vogt, T. N. (2019). Programmable interlocking disks: bottom-up modular assembly of

chemically relevant polyhedral and reticular structural models. Journal of Chemical Education, 1(1), A-D. https://dx.doi.org/10.1021/acs.jchemed.8b00769

Krell, M., Belzen, A. U. Z., & Krüger, D. (2014). Students’ levels of understanding models and modelling, Research in Science Education, 44(1), 109-132. https://dx.doi.org/10.1007/s11165-013-9365-y

Lee, S. W-Y., Chang, H-Y., & Wu, H-K. (2015). Students’ views of scientific models and modeling: do representational characteristics of models and students’ educational levels matter?. Research in Science Education, 47(2), 305-328. https://dx.doi.org/10.1007/s11165-015-9502-x

Linenberger, K. J., & Bretz, S. L. (2015). Biochemistry students` ideas about how an enzyme interacts with a substrate. Biochemistry and Molecular Biology Education, 43(4), 213-222. Recuperado de https://iubmb.onlinelibrary.wiley.com/doi/epdf/10.1002/bmb.20868

Linenberger, K. J., & Bretz, S. L. (2014). Biochemistry students` ideas about shape and charge in enzyme-substrate interactions. Biochemistry and Molecular Biology Education, 42(4), 366-367. Recuperado de https://iubmb.onlinelibrary.wiley.com/doi/epdf/10.1002/bmb.20776

Marzzoco, A., & Torres, B. B. (2007). Bioquímica básica (3a ed.). Rio de Janeiro, RJ: Guanabara Koogan,

Meyer, S. C. (2015). 3D Printing of protein models in an undergraduate laboratory: leucine zippers. Journal of Chemical Education, 92(12), 2120-2125. https://dx.doi.org/10.1021/acs.jchemed.5b00207

Minayo, M. C. S., Deslandes, S. F., & Gomes, R. (2009). Pesquisa Social: teoria, método e criatividade (28a ed.). Rio de Janeiro, RJ: Vozes.

Moreira, M. A. (2011). Aprendizagem significativa: a teoria e textos complementares. São Paulo, SP: Livraria da Física.

Moreira, M. A., & Masini, E. F. S. (2006). Aprendizagem significativa: a teoria de David Ausubel. São Paulo, SP: Centauro. https://dx.doi.org/10.5335/rep.v25i2.8180

Mozzer, N. B., & Justi, R. (2018). Modelagem analógica no Ensino de Ciências. Investigações em Ensino de Ciências, 23(1), 155-182. Recuperado de https://www.if.ufrgs.br/cref/ojs/index.php/ienci/article/view/883/pdf

Muñoz-Campos, V., Franco-Mariscal, A. J., & Branco-López, Á. (2018). Modelos mentales de estudiantes de educación secundaria sobre la transformación de la leche em yogur. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 15(2), 2106. Recuperado de http://dx.doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2018.v15.i2.2106

Muri, E. M. F. (2014). Proteases virais: importantes alvos terapêuticos de compostos peptideomiméticos. Química Nova, 37(2), 308-316. Recuperado de http://www.scielo.br/pdf/qn/v37n2/v37n2a19.pdf

Ornek, F. (2008). Models in Science Education: applications of models in learning and teaching Science. International Journal of Environmental & Science Education, 3(2), 35-45. Recuperado de https://files.eric.ed.gov/fulltext/EJ894843.pdf

Paganini, P., Justi, R., & Mozzer, N. B. (2014). Mediadores na coconstrução do conhecimento de ciências em atividades de modelagem. Ciência e Educação (Bauru), 20(4), 1019-1036. Recuperado de http://www.scielo.br/pdf/ciedu/v20n4/1516-7313-ciedu-20-04-1019.pdf

Pérez, G. M., Galindo, A. A. G., & Galli, L. G. (2018). Enseñanza de la evolución: fundamentos para el diseño de uma propuesta didáctica basada em la modelización y la metacognición sobre los obstáculos epistemológicos. Revista Eureka sobre Enseñanza y Divulgación de lãs Ciencias, 15(2), 2102. Recuperado de https://revistas.uca.es/index.php/eureka/article/view/3625/3872

Prain, V., & Tttler, R. (2012). Learning through constructing representations in Science: a framework of representational construction affordances. International Journal of Science Education, 34(17), 2751-2773. https://dx.doi.org/10.1080/09500693.2011.626462

Sabake, N. J., Marson, G. A., & Torres, B. B. (2006). Estudo interativo da estrutura e função de proteínas. Biblioteca Digital de Ciências. Recuperado de https://www.bdc.ib.unicamp.br/bdc/visualizarMaterial.php?idMaterial=247

Sangiogo, F. A., & Zanon, L. B. (2012). Reflexões sobre modelos e representações na formação de professores com foco na compreensão conceitual da catálise enzimática. Química Nova na Escola, 34(1), 26-34. Recuperado de http://qnesc.sbq.org.br/online/qnesc34_1/06-CCD-09-11.pdf

Scalfani, V. F., & Vaid, T. P. (2014). 3D Printed molecules and extended solid models for teaching symmetry and point groups. Journal of Chemical Education, 91(8), 1174-1180. https://dx.doi.org/10.1021/ed400887t

Smiar, K., & Mendez, J. D. (2016). Creating and using interactive, 3D-printed models to improve student comprehension of the bohr model of the atom, bond polarity, and hybridization. Journal of Chemical Education, 93(9), 1591-1594. https://dx.doi.org/10.1021/acs.jchemed.6b00297

Souza, K. A. F. D., & Cardoso, A. A. (2008). Aspectos macro e microscópicos do conceito de equilíbrio químico e de sua abordagem em sala de aula. Química Nova na Escola, 27(1), 51-56. Recuperado de http://qnesc.sbq.org.br/online/qnesc27/08-peq-3106.pdf

Souza, V. C. A., & Justi, R. (2010). Estudo da utilização de modelagem como estratégia para fundamentar uma proposta de ensino relacionada à energia envolvida nas transformações químicas. Revista Brasileira de Pesquisa em Educação em Ciências, 10(2), 1-26. Recuperado de https://periodicos.ufmg.br/index.php/rbpec/article/download/3978/2542

Souza, V. C. A., & Justi, R. (2011). Interlocuções possíveis entre linguagem e apropriação de conceitos científicos na perspectiva de uma estratégia de modelagem para a energia envolvida nas transformações químicas. Revista Ensaio: Pesquisa em Educação em Ciências, Belo Horizonte, 13(2), 31-46. Recuperado de http://www.scielo.br/pdf/epec/v13n2/1983-2117-epec-13-02-00031.pdf

Szymanski, H., Almeida, l. R., & Prandini, R. C. A. R. (2004). A entrevista na pesquisa em Educação: a prática reflexiva (61a ed). Brasília, DF: Liberlivro. (Série Pesquisa em Educação, 4).

Taber, K. S. (2013). Modelling learners and Science Education: developing representations of concepts, conceptual structure and conceptual change to inform teaching and research. In Taber, K. S. Modelling the Science learner’s knowledge. New York, United States of America: Springer. https://dx.doi.org/10.1007/978-94-007-7648-7

Vasconcelos, F. C. G. C., & Arroio, A. (2013). Explorando as percepções de professores em serviço sobre as visualizações no ensino de química. Química Nova, 36(8), 1242-1247. Recuperado de http://quimicanova.sbq.org.br/imagebank/pdf/Vol36No8_1242_24-ED12968.pdf

Vaz, M., & Choupina, A. (2012). Lipases: biocatalizadores da hidrólise de triacilglicerois. Revista Eletrônica de Biologia, 5(3), 42-58. Recuperado de https://revistas.pucsp.br/reb/article/view/5791/11635

Published

2019-12-30

How to Cite

Almeida, J. F., & Bossolani-Kiill, K. (2019). Tree-dimensional modeling: reflections of future chemistry teachers for teaching and learning of enzyme-substrate interaction. Investigations in Science Education, 24(3), 282–304. https://doi.org/10.22600/1518-8795.ienci2019v24n3p282