Incidence of the use of metacognitive thinking skills in problem solving: Case of mechanical physics students for engineering
DOI:
https://doi.org/10.22600/1518-8795.ienci2022v27n2p57Keywords:
Metacognición, resolución de problemas, Habilidades de pensamiento, Pensamiento críticoAbstract
The development of metacognitive thinking skills in students is a fundamental element for their good academic performance, according to research in recent decades. The research objective was to identify the use that the students of the first semesters of higher education of a higher education institution in Bogotá, Colombia, make of the regulation skills of metacognitive thinking, during the solution of problems in mechanical physics, and the possible incidence directly or indirectly in this solution process, without having previously been instructed or immersed in explicit methodologies for teaching such skills, through the application of a modified set of problem situations, as a data collection instrument. A coding system is also designed in order to translate the data and perform quantitative analysis. The results indicate that a high percentage of participating students fail to make effective use of this type of metacognitive thinking skills. However, the direct impact of its use on proper problem solving does arise in a significant way.References
ABET. (2000). Engineering Accreditation Commission. ABET criteria for accrediting engineering programs. Recuperado de https://www.abet.org/accreditation/accreditation-criteria/.
Abdullah, F. (2009). The patterns of physics problem-solving from the perspective of metacognition. New Hall, Faculty of education. Recuperado de https://www.academia.edu/298432/The_Patterns_of_Physics_Problem-Solving_From_the_Perspective_of_Metacognition
Adams, W., & Wieman, C. (2015), Analyzing the many skills involved in solving complex physics problems. American Journal of Physics, 83(5), 459-467. https://doi.org/10.1119/1.4913923
Akyol, Z., & Garrison, D. R. (2011). Assessing metacognition in an online community of inquiry. Internet and Higher Education, 14(3), 183–190. https://doi.org/10.1016/ j.iheduc.2011.01.005
Balta, N., Mason, A.J., & Singh, C. (2016). Surveying Turkish high school and University students ´attitudes and approaches to physics problem solving. Physical Review Physics Education Research, 12(1), 010129. https://journals.aps.org/prper/abstract/10.1103/PhysRevPhysEducRes.12.010129
Bravo, C., & Buendía, E. (1997). Investigación Educativa. Sevilla, España: Alfar.
Brown, A. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanisms. Metacognition, motivation, and understanding. En F.E. Weinert, & R. H. Kluwe, (Eds.). Metacognition, motivation and understanding. 65-116. Hillsdale, United States of America: Lawrence Erlbaum Associates.
Browne, N., & Keeley, S. (2015). Asking the Right Questions: A Guide to Critical Thinking. United States of America: Pearson.
Ceberio, M. Almudí, J.M., & Franco, Á. (2016). Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education. Journal of Science Education and Technology, 25, 590-609. https://doi.org/10.1007/s10956-016-9615-7
Chekwa, E. McFadden, M. Divine, A., & Dorius, T. (2015). Metacognition: transforming the learning experience. Journal of Learning in Higher Education, 11(2), 109-112. Recuperado de https://files.eric.ed.gov/fulltext/EJ1141767.pdf
Chi, M.T.H. (2006). Two approaches to the study of experts`characteristics. En N. Charness, P. J. Feltovich, R.R. Hoffman, & K. A. Ericsson (Eds). The Cambridge handbook of expertise and expert performance. 21-30. New York, United States of America: Cambridge University Press.
Claxton, G. (2018). The Learning Power Approach: Teaching Learners to Teach Themselves. Corwin, London.
De Cock, M. (2012). Representation use and strategy choice in physics problem solving. Physical Review Special Topics - Physics Education Research, 8(2), 1–15. https://doi.org/10.1103/PhysRevSTPER.8.020117
Fisher, R. (1998). Thinking about thinking: Developing metacognition in children. Early child development and care: ECDC, 141, 1-15. https://doi.org/10.1080/0300443981410101
Fabby, C., & Koenig, K. (2015). Examining the Relationship of Scientific Reasoning with Physics Problem Solving. Journal of STEM Education: Innovations and Research, 16(4), 20-26. Recuperado de https://www.jstem.org/jstem/index.php/JSTEM/article/view/1904
Flavell, J. (1971). Comentarios del primer comentarista: ¿De qué se trata el desarrollo de la memoria?. Desarrollo Humano, 14, 272-278. Recuperado de https://www.jstor.org/stable/26761846
Flavell, J. (1976). Metacognitive aspects of problem solving. En L. B. Resnick (Ed.), The nature of intelligence, 231-235. Hillsdale, United States of America: Laurence Erlbaum.
Flavell, J. (1979). Metacognition and Cognitive Monitoring: A new area of cognitive-development inquiry, American Psychologist, 34(10), 906-911. http://doi.org/10.1037/0003-066x.34.10.906
Flavell, J., Miller, P. H., & Miller, S. A. (2002). Cognitive development (4th ed.). Upper Saddle River, United States of America: Prentice Hall.
Förster, C., & Rojas-Barahona, C. (2010). Adaptación y Validación del Cuestionario de Rasgos de Pensamiento de O´Neil y colaboradores: Metacognición y Motivación en la Solución de Problemas. Revista Iberoamericana de Diagnóstico y Evaluación Psicológica, 30(2). 9-33. ISSN: 1135-3848. Recuperado de https://www.redalyc.org/pdf/4596/459645442002.pdf
Fritzsche, E. Händel, M., & Kröner, S. (2018). What do second-order judgments tell us about low-performing students’ metacognitive awareness? Metacognition and Learning, 13, 159–177. Recuperado de https://doi.org/10.1007/s11409-018-9182-9
García, T. Rodríguez, C. González, D. Álvarez-García, D., & González, J. (2016). Metacognición y funcionamiento ejecutivo en Educación Primaria. Anales de Psicología, 32(2), 474-483. Recuperado de http://dx.doi.org/10.6018/analesps.32.2.202891
Georghiades, P. (2004). From the general to the situated: Three decades of metacognition. International Journal of Science Education, 26(3), 365-383. https://doi.org/10.1080/0950069032000119401
Georghiades, P. (2004). Research Report—Making pupils’ conceptions of electricity more durable by means of situated metacognition, International Journal of Science Education, 26(1), 85-99. https://doi.org/10.1080/0950069032000070333
Greene, J., & Azevedo, R. (2009). A macro-level analysis of SRL processes and their relations to the acquisition of a sophisticated mental model of a complex system, Contemporary Educational Psychology. 34(1), 18-29. https://doi.org/10.1016/j.cedpsych.2008.05.006
Haeruddin, Prasetyo, Z., & Supahar. (2020). The Development of a Metacognition Instrument for College Students to Solve Physics Problems. International Journal of Instruction, 13(1), 767-782. https://doi.org/10.29333/iji.2020.13149a.
Harris, K. R., Santangelo, T., & Graham, S. (2010). Metacognition and strategies instruction in writing. En H. S. Schneider & Waters, Metacognition, strategy use, and instruction- 226-256. London, England: The Gilford Press.
Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. New York, United States of America: Routledge.
Hsu, L. Brewe, E. Foster, T., & Harper, K. (2004). Resource letter RPS-1: Research in Problem solving. American Journal of Physics, 72(9), 1147-1156, https://doi.org/10.1119/1.1763175
Instituto Colombiano Para la Evaluación de la Educación. ICFES (2020). Informe de Resultados para PISA, Colombia 2018. Recuperado de http://icfes.gov.co
Jonassen, D. (2003). Using cognitive tools to represent problems. Journal of Research on Technology Education, 35, 362-381. https://doi.org/10.1080/15391523.2003.10782391
Koch, A. (2001). Training in metacognition and comprehension of physics texts. Science Education, 85(6), 758-768. https://doi.org/10.1002/sce.1037
Kohl, P., & Finkelstein, N. (2008). Patterns of multiple representation use by experts and novices during physics problem solving. Physics review Special topics – Physics Education Research, 4(1), 1-13. https://doi.org/10.1103/PhysRevSTPER.4.010111
Kryjevskaia, M., Stetzer, M. R., & Grosz, N. (2014). Answer first: Applying the heuristic-analytic theory of reasoning to examine student intuitive thinking in the context of physics. Physical Review Special Topics - Physics Education Research, 10(2), 020109, 1-12. https://doi.org/10.1103/PhysRevSTPER.10.020109
Larkin, J. McDermott, J. Simon, D., & Simon, H. (1980). Expert and novice performance in solving physics problems. Science. 208(4450), 1335-1342. http://dx.doi.org/10.1126/science.208.4450.1335
Manzanares, M. C., & Valdivieso-Leon, L. (2020). Relationship between academic performance and development of self-regulation strategies in universities students. Revista Interuniversitaria de Formación del Profesorado, 23(3). https://doi.org/10.6018/reifop.385491
Marín, F. ,& Rojas-Barahona, C. (2010). Adaptación y validación de cuestionario de rasgos de pensamiento de O´Neil y colaboradores: Metacognición y Motivación en la solución de problemas. Revista Iberoamericana de Diagnóstico y evaluación, 2(30). 9-33. Recuperado de http://www.redalyc.org/articulo.oa?id=459645442002
Mayer, R. (1992). Thinking, Problem Solving, Cognition. New York, United States of America: Freeman,
Mayer, R. (1998). Cognitive, metacognitive, and motivational aspects of problem solving, Instructional Science, 26, 49-63. https://doi.org/10.1023/A:1003088013286
Marulis, L., & Nelson, L. (2020). Metacognitive processes and association to executive function and motivation during a problem-solving task in 3-5 years old. Metacognition and learning, 16, 207-231.
https://doi.org/10.1007/s11409-020-09244-6
McDowell, L. (2019). The roles of motivation and metacognition in producing self-regulated learners of college physical science: a review of empirical studies. International journal of Science education, 41(17), 2524-2541. https://doi.org/10.1080/09500693.2019.1689584
Meijer, J. Sleegers, P. Elshout-Mohr, M. Van Daalen-Kapteijns, M. Meeus, W., & Tempelaar, D. (2013). The development of a questionnaire on metacognition for students in higher education. Educational Research, 55(1), 31–52. https://doi.org/10.1080/00131881.2013.767024
Meneghetti, C. De Beni, R., & Cornoldi, C. (2007). Strategic knowledge and consistency in students with good and poor study skills. European Journal of Cognitive Psychology, 19(4-5), 628- 649.
https://doi.org/10.1080/09541440701325990
Moser, S., Zumbach, J., & Deibl, I. (2017). The effect of metacognitive training and prompting on learning success in simulation-based physics learning. Science Education, 101(6), 944- 967.
https://doi.org/10.1002/sce.21295
Mota, A. M. Körhasan, N. Miller, K., & Mazur, E. (2019). Homework as a metacognitive tool in an undergraduate physics course. Physical Review Physics Education Research, 15(1), 010136(12). https://doi.org/10.1103/PhysRevPhysEducRes.15.010136
Nederhand, M. L., Tabbers, H.K., De Bruin, A.B., & Rikers, R. (2021). Metacognitive awareness as measured by second-order judgements among university and secondary school students. Metacognition Learning. 16, 1-14. https://doi.org/10.1007/s11409-020-09228-6
Nietfeld, J. L., & G. Shraw, (2010). The effect of knowledge and strategy training on monitoring accuracy, The Journal of Educational Research, 95(3), 131-142. https://doi.org/10.1080/00220670209596583
Ormrod, J. (2004). Human Learning. Upper Saddle River, United States of America: Pearson/Merrill/Prentice Hall.
Osses, S., & Jaramillo, S. (2008). Metacognición, un camino para aprender a aprender. Estudios Pedagógicos, 34(1), 187-197. https://dx.doi.org/10.4067/S0718-07052008000100011
Özsoy, G. Memis, A., & Temur, T. (2017). Metacognition, study habits and attitudes. International Electronic Journal of Elementary Education, 2(1), 154-166. Recuperado de https://iejee.com/index.php/IEJEE/article/view/263
Passow, H. (2012). Which ABET competencies do engineering graduates find most important in their work? Journal of Engineering Education, 101(1), 95-118. https://doi.org/10.1002/j.2168-9830.2012.tb00043.x
Polya, G. (1965). Como plantear y resolver problemas. México, México: Trillas.
Pozo, J. (1999). La solución de problema., Madrid, España: Santillana.
Rosa, C., & Ghiggi, C. (2018). Resolução de problemas em física envolvendo estratégias metacognitivas: análise de propostas didáticas. Investigações em Ensino de Ciências, 23(3), 30-59. https://doi.org/10.22600/1518-8795.ienci2018v23n3p31
Ritchhart, R. Church, M., & Morrison, K. (2011). Making Thinking Visible: How to promote Engagement, Understanding, and Independence for all learners. San Francisco, United States of America: Jossey-Bass.
Sabella, M., & Redish, E. (2007) Knowledge organization and activation in physics problem solving. American Journal of Physics, 75(11), 1017-1029. https://doi.org/10.1119/1.2746359
Schraw, G. (2001). Promoting general metacognitive awareness. En H.J. Hartman (Ed). Metacognition in learning and instruction: Theory, research, and practice. 3-16. Boston, United States of America: Kluwer.
Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351–371. https://doi.org/10.1007/BF02212307
Schraw, G., & Dennison, R. S. (1994). Assessing metacognitive awareness, Contemporary Educational Psychology, 19(4), 460-475. https://doi.org/10.1006/ceps.1994.1033
Schraw, G. Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in education: Metacognition as part of broader perspective on learning. Research in Science Education. 36, 111-139. https://doi.org/10.1007/s11165-005-3917-8
Taasoobshirazi, G., & Farley, J. (2013). Construct validation of the physics metacognition inventory. International Journal of Science Education, 35, 447-459. http://dx.doi.org/10.1080/09500693.2012.750433
Taasoobshirazi, G., Bailey, M., & Farley, J. (2015). Physics metacognition inventory part II: Confirmatory factor analysis and Rasch analysis. International Journal of Science Education, 37(17), 2769-2786.
http://dx.doi.org/10.1080/09500693.2015.1104425
Thiede, K.W., Anderson, M. C., & D Therriault, (2003). Accuracy of metacognitive monitoring effects learning of texts. Journal of Educational Psychology, 95(1), 66-73. https://doi.org/10.1037/0022-0663.95.1.66
Truyol, M. Sanjosé, V., & Gangoso, Z. (2014). Obstacles modeling reality: Two Exploratory Studies on Physics Defined and Undefined Problems, Journal of Baltic Science Education, 13(6), 883- 895. htpps://doi.org/10.33225/jbse/14.13.883
Veenman, M. V. J. (2005). The assessment of metacognitive skills: What can be learned from multi-method deigns? En C. Artelt & B. Moscher (Eds.). Learnstrategien und Metacognition: Implicationen fur Forschung und Praxis. 75-97. Berlin, Germany: Waxmann.
Veenman, M. V. J. (2011). Learning to self-monitor and self-regulate. En R. E. Mayer y P. A. Alexander (Eds.), Handbook of research on learning and instruction (pp. 197–218). New York, United States of America: Routledge.
Yuruk, N. Beeth, M. E., & Andersen, C. (2009). Analyzing the effect of metaconceptual teaching practices on students ‘understanding of force and motion concepts, Research in Science Education, 39(4), 449-475. https://doi.org/10.1007/s11165-008-9089-6
Zepeda, C. Richey, J. Ronevich, P., & Nokes-Malach, T. (2015). Direct instruction of metacognition benefits adolescent science learning, transfer, and motivation: An in vivo study, Journal of Educational Psychology, 107(4), 954-970. http://dx.doi.org/10.1037/edu0000022
Zimmerman, B. J. (2006). Development and adaptation of expertise: The role of self-regulatory processes and beliefs. En N. Charness, P.J. Feltovich, R. R. Hoffman, & K. A. Ericsson (Eds)., The Cambridge handbook of expertise and expert performance, 705-722. New York, United States of America: Cambridge University Press.
Zimmerman, B. J. (2011). Motivational sources and outcomes of self-regulated learning and performance. En B. J. Zimmerman, & D. H. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 49–64). New York, United States of America: Routledge.
Zohar, A., & Barzilai, S. (2013). A review of research on metacognition in science education: Current and future directions. Studies in Science Education, 49(2), 121-169. https://doi.org/10.1080/03057267.2013.847261
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ignacio Laiton Poveda
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
IENCI is an Open Access journal, which does not have to pay any charges either for the submission or processing of articles. The journal has adopted the definition of the Budapest Open Access Initiative (BOAI), which states that the users have the right to read, write down, copy, distribute, print, conduct searches and make direct links with the complete texts of the published articles.
The author responsible for the submission represents all the authors of the work and when the article is sent to the journal, guarantees that he has the permission of his/her co-authors to do so. In the same way, he/she provides an assurance that the article does not infringe authors´ rights and that there are no signs of plagiarism in the work. The journal is not responsible for any opinions that are expressed.
All the articles are published with a Creative Commons License Attribution Non-commercial 4.0 International. The authors hold the copyright of their works and must be contacted directly if there is any commercial interest in the use of their works.