Investigating students' conceptual change about colour in an innovative research-based teaching sequence
DOI:
https://doi.org/10.22600/1518-8795.ienci2018v23n1p95Palabras clave:
Colour, Misconceptions, Conceptual change, Middle schoolResumen
This paper is the second part of a multiphase study investigating the impact of a mathematical model, the Addition Table of Colours (ATC), in the learning of colour phenomena. The ATC instruction was undertaken in several 8th grade classes in three different Portuguese schools (250 students) and included collaborative activities through Lab stations model. In the control group (204 students), the colour phenomena were taught in the traditional way, with the goals set by the teachers, without any intervention of the project. The two groups of students were compared in terms of content knowledge acquired in the learning of this subject through comparison and analysis of their pre and post-tests. Quantitative analyses of the pre/post-tests revealed five variants of students’ representations about this phenomenon. We found that the ATC model, inserted in an interactive and carefully designed teaching environment, is more effective in promoting conceptual change and scientific understandings of colour phenomena.Citas
Ausubel, D. P. (1963). The Psychology of Meaningful Verbal Learning. New York: Grune and Stratton.
Ausubel, D. P. (1968). Educational Psychology: A Cognitive View. New York: Holt, Rinehart and Winston.
Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education, 5(1), 7. DOI:10.1080/0969595980050102
Boynton, R. M. (1990). Human color perception. In K. N. Leibovic (Ed.), Science of Vision (pp. 211-253). New York: Springer-Verlag.
Chauvet, F. (1996). Teaching colour: designing and evaluation of a sequence. European Journal of Teacher Education, 19(2), 121-136. DOI:10.1080/0261976960190204
Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.). Handbook of research on conceptual change (pp. 61-82). Hillsdale, NJ: Erlbaum.
Chi, M. T. H., & Roscoe, R. D. (2002). The process and challenges of conceptual change. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 3-27). Dordrecht: Kluwer Academic Publishers.
Chiu, M.-H., & Lin, J.-W. (2005). Promoting fourth graders' conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 429-464. DOI: 10.1002/tea.20062
Colin, P.; Chauvet, F. & Viennot, L. (2002) Reading images in optics: Students' difficulties and teachers' views. International Journal of Science Education, 24, 313-332. DOI: 10.1080/09500690110078923
Driver, R. (1989). Students' conceptions and the learning of science. International Journal of Science Education, 11(5), 481-490. DOI: 10.1080/0950069890110501
Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning, International Journal of Science Education, 25(6), 671-688. DOI: 10.1080/09500690305016
Eryilmaz, A. (2002). Effects of conceptual assignments and conceptual change discussions on students' misconceptions and achievement regarding force and motion. Journal of Research in Science Teaching, 39(10), 1001-1015. DOI: 10.1002/tea.10054
Feher, E., & Meyer, K. R. (1992). Children's conceptions of color. Journal of Research in Science Teaching, 29(5), 505. DOI: 10.1002/tea.3660290506
Georghiades, P. (2000) Beyond conceptual change learning in science education: focusing on transfer, durability and metacognition. Educational Research, 42(2), 119–139. DOI: 10.1080/001318800363773
Grosslight, L., Unger, C., Jay, E. and Smith, C. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799–822. DOI: 10.1002/tea.3660280907
Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students' prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731-743. DOI: 10.1002/tea.3660200804
Hewson, P. W., & Hewson, M. G. A. B. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13(1), 1-13. DOI: 10.1007/BF00051837
Hewson, P. W., and Thorley, N. R. (1989) The conditions of conceptual change in the classroom. International Journal of Science Education, 11, Special Issue, 541–553. DOI: 10.1080/0950069890110506
Langley, D., Ronen, M., & Eylon, B.-S. (1997). Light propagation and visual patterns: Preinstruction learners' conceptions. Journal of Research in Science Teaching, 34(4), 399-424. DOI: 10.1002/(SICI)1098-2736(199704)34:4%3C399::AID-TEA8%3E3.0.CO;2-M
Leite, L., & Sá, S. (1997). Cor, óptica e pintura. Gazeta da Física, 20, 17-21.
Martinez-Borreguero, G., Rodríguez, A. L. P., López, M. I. S., & Fernández, P. J. P. (2013). Detection of Misconceptions about Colour and an Experimentally Tested Proposal to Combat them, International Journal of Science Education, 35(8), 1299-1324.
Moreira, M. A., Lagreca, M. C. B. E. (1998) Representações mentais dos alunos em mecânica clássica: três casos, Investigações em Ensino das Ciências, 3(2), 83-106.
Mortimer, E. (1996) Construtivismo, mudança conceptual e ensino das Ciências: para onde vamos?, Investigações em Ensino das Ciências, 1(1), 20-39.
Mota, A. R., & Lopes, J. M., & Lopes dos Santos, J. M. (2013). Estações laboratoriais: uma aposta no ensino experimental. Gazeta da Física, 36(1), 25-28.
Mota, A. R., & Lopes dos Santos, J. M. (2014). Addition Table of colours: additive and subtractive mixtures described using a reasoning model. Physics Education, 49(1), 61-66. DOI: 10.1088/0031-9120/49/1/61
Mota, A. R. (2017). Cor. Ciência elementar, 5(2), 019. DOI: 10.24927/rce2017.019
Osborne, J. (1993) Beyond Constructivism; In: The proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics. Misconceptions Trust: Ithaca, New York.
Osborne, J. F., Black, P., Meadows, J., & Smith, M. (1993). Young children's (7-11) ideas about light and their development. International Journal of Science Education, 15(1), 83 - 93.
Pintrich, P. R., Marx, R. W. and Boyle, R. A. (1993) Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 167–199. DOI: 10.3102/00346543063002167
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227. DOI: 10.1002/sce.3730660207
Saxena, A. B. (1991). The understanding of the properties of light by students in India. International Journal of Science Education, 13(3), 283-289. DOI: 10.1080/0950069910130306
Selley, N. J. (1996). Children's ideas on light and vision. International Journal of Science Education, 18(6), 713-723. DOI: 10.1080/0950069960180605
Sinatra, G. M., and Pintrich, P. R., Eds (2003) Intentional conceptual change, Mahwah, NJ: Erlbaum.
Treagust, D. F., Harrison, A. G., Venville, G. J., and Daghher, Z. (1996). Using an analogical teaching approach to engender conceptual change. International Journal of Science Education, 18, 213–229. DOI: 10.1080/0950069960180206
Viennot, L. (2001). Reasoning in Physics. The part of common sense: Kluwer Academic Publishers.
Viennot, L. (2002). Teaching Physics: Kluwer Academic Publishers.
Vosniadou, S. (2002). On the nature of naive physics. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: issues in theory and practice (pp. 59-76). Dordrecht: Kluwer Academic Publishers.
Vosnoiadou, S. &, Ioannides, C. (1998). From conceptual change to science education: a psychological point of view. International Journal of Science Education, 20, 1213–1230. DOI:10.1080/0950069980201004
Watts, D. M. (1985). Student conceptions of light: a case study. Physics Education, 20(4), 183.
Woolf, L. D. (1999). Confusing color concepts clarified. The Physics Teacher, 37, 204-206.
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
La IENCI es una revista de acceso libre (Open Access) y no hay cobro de ninguna tasa ya sea por el envío o procesamiento de los artículos. La revista adopta la definición de la Budapest Open Access Initiative (BOAI), es decir, los usuarios tienen el derecho de leer, descargar, copiar, distribuir, imprimir, buscar y hacer links directos a los textos completos de los artículos publicados en esta revista.
El autor responsable por el envío representa a todos los autores del trabajo y, al enviar este artículo para su publicación en la revista está garantizando que posee el permiso de todos para hacerlo. De igual manera, garantiza que el artículo no viola los derechos de autor y que no hay plagio en lugar alguno del trabajo. La revista no se responsabiliza de las opiniones emitidas en los artículos.
Todos los artículos de publican con la licencia Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC 4.0). Los autores mantienen sus derechos de autor sobre sus producciones y deben ser contactados directamente en el caso de que hubiera interés en el uso comercial de su obra.