Scientific thinking employed in tasks of introductory physics
DOI:
https://doi.org/10.22600/1518-8795.ienci2017v22n1p162Keywords:
scientific thinking, reasoning strategies, learning group, Tutorials in IntroductoryAbstract
In Science Education, notably in Physics Teaching, there are research based instructional strategies that are renown by their potential to promote conceptual development. It is likely that many of these strategies lead to more elaborate learning; promoting, for instance, scientific thinking development. Scientific thinking might be construed as the sum of domain-specific knowledge and domain-general strategies. Here is reported an investigation of domain-general strategies used by students on tasks proposed in a Newtonian Dynamics activity inspired by “Tutorials in Introductory Physics”. Nineteen volunteers, aged 15-17, participated; all were students in electronics or computer science from a Brazilian vocational high school. The school activities proposed to the students have been regularly used in the Physics course for seven years. Therefore, there was no special interventions prepared with research purposes. Data collection involved audio and video recordings of students’ teamwork; field notes; and photographs of student’s notebooks and of posters teams presented in classes. Data analysis was based on categorization of domain-general strategies used by students. We found that students used four domain-general strategies on the proposed tasks: evidence-based reasoning, assessment of the reasoning line, reason based on operational definition and hypothetic-deductive reasoning. These findings suggest that activities inspired by the “Tutorials in Introductory Physics” favor the learning of scientific concepts plus further – and yet more elaborate – learning. These results place a demand on the field of Science Education to refine the strategies of data collection and data analysis as a way to identify the use of other domain-general strategies by students in similar contexts, as well as the expansion of research to other schools contexts.References
AAAS. (1990). Science for all Americans: Project 2061. New York: Oxford University Press. Recuperado de http://www.project2061.org/publications/sfaa/default.htm
Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82, 417–436. DOI: 10.1002/(SICI)1098-237X(199807)82:4<417::AID-SCE1>3.0.CO;2-E
Al-Ahmadi, F. M. A., & Reid, N. (2011). Scientific thinking. What is it and can it be measured? Revista de Educación En Ciencias, 12(5), 53–59.
Almudi, J. M., & Ceberio, M. (2014). Analysis of arguments constructed by first-year engineering students addressing electromagnetic induction problems. International Journal of Science and Mathematics Education. DOI: 10.1007/s10763-014-9528-y
Arons, A. B. (1996). Teaching Introductory Physics. Teaching Introductory Physics. New York: John Wiley & Sons. DOI: 10.1119/1.880002
Bardin, L. (1977). Análise de Conteúdo. Lisboa: Edições 70.
Benegas, J. (2007). Tutoriales para Física Introductoria : Una experiencia exitosa de Aprendizaje Activo de la Física. Latin American Journal Physics. Education, 1(1), 32–38.
Benegas, J., & Flores, J. S. (2014). Effectiveness of Tutorials for Introductory Physics in Argentinean high schools. Physical Review Special Topics - Physics Education Research, 10(1), 1–10. DOI: 10.1103/PhysRevSTPER.10.010110
Borges, A. T., & Gomes, A. D. T. (2005). Percepção de estudantes sobre desenhos de testes experimentais. Caderno Brasileiro de Ensino de Fisica, 22(1), 72–95.
Borges, O. (2006). Formação inicial de professores de Física: Formar mais! Formar melhor! Revista Brasileira de Ensino de Física, 28(2), 135–142.
Borges, O. N., Borges, A. T., & Vaz, A. M. (2005). Os planos dos estudantes para resolver problemas práticos. Revista Brasileira de Ensino de Física, 27(3), 435–446. DOI:10.1590/S1806-11172005000300022
Brasil. Diretrizes e bases da educação nacional (1996). Brasil.
BRASIL. Diretrizes Curriculares Nacionais da Educação Básica (2013).
Bridgman, P. W. (1927). The Logic of Modern Physics. New York: Macmillan.
Bulgren, J. a., Ellis, J. D., & Marquis, J. G. (2013). The Use and Effectiveness of an Argumentation and Evaluation Intervention in Science Classes. Journal of Science Education and Technology, 23(1), 82–97. DOI: 10.1007/s10956-013-9452-x
Castanheira, M. L., Crawford, T., Dixon, C. N., & Green, J. L. (2000). Interactional Ethnography: An Approach to Studying the Social Construction of Literate Practices. Linguistics and Education, 11(4), 353–400. DOI: 10.1016/S0898-5898(00)00032-2
Choi, A., Hand, B., & Greenbowe, T. (2012). Students’ Written Arguments in General Chemistry Laboratory Investigations. Research in Science Education, 43(5), 1763–1783. DOI: 10.1007/s11165-012-9330-1
Coelho, G. R. (2011). A evolução do entendimento dos estudantes em eletricidade: Um estudo longitudinal. Universidade Federal de Minas Gerais. Recuperado de http://www.bibliotecadigital.ufmg.br/dspace/bitstream/handle/1843/FAEC-8M7F6M/tese_final.pdf
Cohen, E. (1994). Restructuring the classroom: Conditions for productive small groups. Review of Educational Research, 64(1), 1–35.
Cruz, E., O’Shea, B., Schaffenberger, W., Wolf, S., & Kortemeyer, G. (2010). Tutorials in Introductory Physics: The Pain and the Gain. The Physics Teacher, 48(7), 453–457. DOI: 10.1119/1.3488188
Ding, L., Wei, X., & Mollohan, K. (2014). Does Higher Education Improve Student Scientific Reasoning Skills? International Journal of Science and Mathematics Education, (Dec). DOI: 10.1007/s10763-014-9597-y
Dunbar, K., & Fugelsang, J. (2005). Scientific Thinking and Reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge Handbook of Thinking and Reasoning (pp. 705–725). Cambridge: Cambridge University Press. DOI: 10.1093/oxfordhb/9780199734689.013.0035
Dunbar, K. N., & Klahr, D. (2012). Scientific Thinking and Reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford Handbook of Thinking and Reasoning (pp. 701–718). New York: Oxford University Press. DOI: 10.1093/oxfordhb/9780199734689.013.0035
Faria, A. F. (2008). Engajamento de Estudantes em Atividade de Investigação. Universidade Federal de Minas Gerais. Recuperado de http://dspace.lcc.ufmg.br/dspace/bitstream/1843/FAEC-84XHTF/1/dissertacao_faria_a_f.pdf
Faria, A. F. (2016). Investigação de experiências de pensamento científico de estudantes em tarefas de física em grupo. Tese de Doutorado. Universidade Federal de Minas Gerais. Recuperado de https://www.researchgate.net/publication/305173831
Fensham, P. J. (2012). The challenge of generic competences to science education. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), Proceedings of the ESERA 2011 Conference: Science learning and Citizenship (pp. 7–14). Lyon: ESERA. Recuperado de http://www.esera.org/media/ebook/strand9/ebook-esera2011_FENSHAM-09.pdf
Finkelstein, N., & Pollock, S. (2005). Replicating and understanding successful innovations: Implementing tutorials in introductory physics. Physical Review Special Topics - Physics Education Research, 1(1), 1–13. DOI: 10.1103/PhysRevSTPER.1.010101
Flores, J. S., & Benegas, J. (2008). Aprendizaje de circuitos eléctricos en el nivel polimodal: Resultados de distintas aproximaciones didácticas. Enseñanza de Las Ciencias, 26(2), 245–256.
Gil-Pérez, D., Montoro, I. F., Alís, J. C., Cachapuz, A. F. C., & Praia, J. F. (2001). Para uma imagem não deformada do trabalho cientifico. Ciência & Educação (Bauru), 7(2), 125–153.
Gilabert, S., Garcia-Mila, M., & Felton, M. K. (2013). The Effect of Task Instructions on Students’ Use of Repetition in Argumentative Discourse. International Journal of Science Education, 35(17), 2857–2878. DOI: 10.1080/09500693.2012.663191
Green, J., & Meyer, L. (1991). The embeddedness or reading in classroom life: reading as a situated process. In C. Baker & A. Luke (Eds.), Toward a critical sociology of reading pedagogy (pp. 141–160). Philadelphia: Jonh Benjamins.
Henderson, C., & Dancy, M. (2009). Impact of physics education research on the teaching of introductory quantitative physics in the United States. Physical Review Special Topics - Physics Education Research, 5(2), 1–8. DOI: 10.1103/PhysRevSTPER.5.020107
Heron, P. R. L., Loverude, M. E., Shaffer, P. S., & McDermott, L. C. (2003). Helping students develop an understanding of Archimedes’ principle. II. Development of research-based instructional materials. American Journal of Physics, 71(11), 1188–1195.
Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force Concept Inventory. The Physics Teacher, 30, 141–158.
Hodson, D. (1985). Philosophy of Science, Science and Science Education. Studies in Science Education, (12), 25–57. DOI: 10.1080/03057268508559922
Hodson, D. (1986). Philosophy of science and science education. Journal of Philosophy of Education, 20(2), 215–225. DOI: 10.1080/03057268508559922
Hodson, D., & Wong, S. L. (2014). From the Horse’s Mouth: Why scientists’ views are crucial to nature of science understanding. International Journal of Science Education, 36(16), 1–27. DOI: 10.1080/09500693.2014.927936
Lordanou, K., & Constantinou, C. P. (2015). Supporting Use of Evidence in Argumentation Through Practice in Argumentation and Reflection in the Context of SOCRATES Learning Environment. Science Education, 99(2), 282–311. DOI:10.1002/sce.21152
Jiménez-Aleixandre, M. P., & Bustamante, J. D. de. (2003). Discurso de aula y argumentación en la clase de ciencias : Cuestiones teóricas y metodológicas. Enseñanza de Las Ciencias, 21(3), 359–370.
Julio, J. M. (2009). Física e Masculinidades: microanálise de atividades de investigação na escola. Universidade Federal de Minas Gerais. Tese de Doutorado. Universidade Federal de Minas Gerais. Recuperado de http://www.bibliotecadigital.ufmg.br/dspace/bitstream/handle/1843/FAEC-843NYU/tese_versaocorrigida_jmj_2010_final.pdf?sequence=1
Julio, J. M., Vaz, A., & Borges, A. T. (2009). Construção de gráficos em atividades de investigação: Microanálise de aulas de física. Enseñanza de Las Ciencias, (Extra), 3038–3041.
Julio, J. M., & Vaz, A. M. (2007). Grupos de alunos como grupos de trabalho: um estudo sobre atividades de investigação. Revista Brasileira de Pesquisa em Educaçao Em Ciências, 7(2).
Julio, J. M., Vaz, A. M., & Fagundes, A. (2011). Atenção: Alunos engajados - Análise de um grupo de aprendizagem em atividade de investigação. Ciência & Educação (Bauru), 17(1), 63–81. DOI: 10.1590/S1516-73132011000100005.
Kasseboehmer, A. C. método investigativo em aulas teóricas de Q. : estudo das condições da formação do espírito científicoa, & Ferreira, L. H. (2013). O método investigativo em aulas teóricas de Química: estudo das condições da formação do espírito científico. Revista Electrónica de Enseñanza de Las Ciencias, 12, 144–168.
Katchevich, D., Hofstein, A., & Mamlok-Naaman, R. (2013). Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments. Research in Science Education, 43(1), 317–345. DOI: 10.1007/s11165-011-9267-9
Keller, C. J., Finkelstein, N. D., Perkins, K. K., & Pollock, S. J. (2005). Assessing the effectiveness of a computer simulation in conjunction with Tutorials in Introductory Physics in undergraduate physics recitations. In P. Heron, L. McCullough, & J. Marx (Eds.), Physics Education Research Conference Proceedings (pp. 109–112). Salt Lake: AIP.
Klahr, D., & Dunbar, K. (1988). Dual Space Search During Scientific Reasoning. Cognitive Science, 12(1), 1–48.
Klahr, D., Zimmerman, C., & Jirout, J. (2011). Educational interventions to advance children’s scientific thinking. Science, 333(6045), 971–5. DOI: 10.1126/science.1204528
Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96(4), 674–689.
Kuhn, D., Amsel, E., & O’Loughlin, M. (1988). The Development of Scientific Thinking Skills. San Diego: Academic Press.
Kuhn, D., & Pearsall, S. (2000). Developmental Origins of Scientific Thinking. Journal of Cognition and Development, 1(1), 113–129. DOI: 10.1207/S15327647JCD0101N_11
Kulatunga, U., Moog, R. S., & Lewis, J. E. (2013). Argumentation and participation patterns in general chemistry peer-led sessions. Journal of Research in Science Teaching, 50(10), 1207–1231. DOI: 10.1002/tea.21107
Lawson, A. E. (1978). The development and validation of a classroom test of formal reasoning. Journal of Research in Science Teaching, 15(1), 11–24. DOI: 10.1002/tea.3660150103
Lawson, A. E. (1982). The nature of advanced reasoning and science instruction. Journal of Research in Science Teaching, 19(9), 743–760. DOI: 10.1002/tea.3660190904
Lawson, A. E. (2000). The Generality of Hypothetico-Deductive Reasoning: Making Scientific Thinking Explicit. The American Biology Teacher, 62(7), 482. DOI: 10.1662/0002-7685(2000)062[0482:TGOHDR]2.0.CO;2
Lawson, A. E. (2003). Allchin’s Shoehorn, or Why Science is Hypothetico-Deductive. Science & Education, 12(3), 331–337. Doi:10.1023/A:1024090727385
Lawson, A. E. (2010). Basic inferences of scientific reasoning, argumentation, and discovery. Science Education, 94(2), 336–364. DOI: 10.1002/sce.20357
Lee, H. S., & Park, J. (2013). Deductive reasoning to teach newton ’ s law of motion. International Journal of Science and Mathematics Education, 11, 1391–1414. DOI: 10.1007/s10763-012-9386-4
Locatelli, R. J., & Carvalho, A. M. P. (2007). Uma análise do raciocínio utilizado pelos alunos ao resolverem os problemas propostos nas atividades de conhecimento físico. Revista Brasileira de Pesquisa em Educaçao Em Ciências, 7(3), 1–18.
Lorenzo, M., Crouch, C. H., & Mazur, E. (2006). Reducing the gender gap in the physics classroom. American Journal of Physics, 74(2), 118–122. DOI: 10.1119/1.2162549
Maia, P. F., & Justi, R. (2008). Desenvolvimento de habilidades no Ensino de Ciências e o processo de avaliação: Análise da coerência. Ciência & Educação, 14(3), 431–450. DOI: 10.1590/S1516-73132008000300005
Mansilla, V. B., & Jackson, A. (2011). Educating for Global Competence: Preparing Our Youth to Engage the World. New York: Asia Society.
Maruši?, M., & Sliško, J. (2012). Influence of Three Different Methods of Teaching Physics on the Gain in Students’ Development of Reasoning. International Journal of Science Education, 34(2), 301–326. DOI: 10.1080/09500693.2011.582522
Mashood, K. K., & Singh, V. A. (2013). Large-scale studies on the transferability of general problem-solving skills and the pedagogic potential of physics. Physics Education, 48(5), 629–635. DOI: 10.1088/0031-9120/48/5/629
McComas, W. F. (Ed.). (2002). The Nature of Science in Science Education - Rationales and Strategies. New York: Kluwer Academic Publishers.
McDermott, L. C., & Shaffer, P. S. (1998). Tutorials in Introductory Physics - Preliminary Edition. Upper Saddle River: Prentice Hall.
Mcdermott, L. C., Shaffer, P. S., & Constantinou, C. P. (2000). Preparing teachers to teach physics and physical science by inquiry. Physics Education, 35(6), 411–416. DOI: 10.1088/0031-9120/35/6/306
Mercer, N. (1995). The guided construction of Knowledge: Talk amongst teachers and learners. Clevedon: Multilingual Matters.
Millar, R., & Lubben, F. (1996). Knowledge and Action: Students’ Understanding of the Procedures of Scientific Enquiry. In G. Weldford, J. Osborne, & P. Scott (Eds.), Research in Science and Education in Europe (pp. 166–173). London: Falmer Press.
Moraes, R. (1999). Análise de Conteúdo. Revista Educação, 22(37), 7–32.
Mortimer, E. F., Massicame, T., Tiberghien, A., & Buty, C. (2007). Uma metodologia para caracterizar os gêneros de discurso como tipos de estratégias enunciativas nas aulas de Ciências. In R. Nardi (Ed.), A pesquisa em Ensino de Ciências no Brasil: Alguns Recortes (pp. 53–94). São Paulo: Escrituras.
Mulder, Y. G., Lazonder, A. W., & de Jong, T. (2010). Finding Out How They Find It Out: An empirical analysis of inquiry learners’ need for support. International Journal of Science Education, 32(15), 2033–2053. DOI: 10.1080/09500690903289993
NRC. (2013). Next Generation Science Standards. Recuperado de http://www.nextgenscience.org/
Osborne, J. (2010). Arguing to learn in science: the role of collaborative, critical discourse. Science, 328(5977), 463–6. DOI: 10.1126/science.1183944
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020. DOI: 10.1002/tea.20035
Osborne, J., Simon, S., Christodoulou, A., Howell-Richardson, C., & Richardson, K. (2013). Learning to argue: A study of four schools and their attempt to develop the use of argumentation as a common instructional practice and its impact on students. Journal of Research in Science Teaching, 50(3), 315–347. DOI: 10.1002/tea.21073
Paula, H. de F. e, & Borges, A. T. (2007). Avaliação e testes de explicações na Educação em Ciências. Ciência & Educação, 13(2), 175–192. DOI: 10.1590/S1516-7313200700020000
PEG/UW. (2013). Preface to Tutorials in Introductory Physics. Recuperado de http://depts.washington.edu/uwpeg/tutorial/preface
Piekny, J., Grube, D., & Maehler, C. (2014). The Development of Experimentation and Evidence Evaluation Skills at Preschool Age. International Journal of Science Education, 36(2), 334–354. DOI: 10.1080/09500693.2013.776192
Pollock, S. J. (2005). No Single Cause: Learning Gains, Student Attitudes, and the Impacts of Multiple Effective Reforms. In AIP Conference Proceedings (Vol. 790) (pp. 137–140). Aip. Recuperado de http://link.aip.org/link/?APC/790/137/1&Agg=doi
Pollock, S. J., Finkelstein, N. D., & Kost, L. E. (2007). Reducing the gender gap in the physics classroom: How sufficient is interactive engagement? Physical Review Special Topics - Physics Education Research, 3(1), 1–4. DOI: 10.1103/PhysRevSTPER.3.010107
Pozo, J. I., & Crespo, M. Á. G. (2009). A Aprendizagem e o Ensino de Ciências - do conhecimento cotidiano ao conhecimento científico (5a ed). Porto Alegre: Artmed.
Praia, J. F., Cachapuz, A. F. C., & Gil-Pérez, D. (2002). Problema, Teoria e Observação em Ciência : Para uma reorientação epistemológica da educação em ciência. Ciência E Educação, 8(1), 127–145. DOI: 10.1590/S1516-73132002000100010
Ritchhart, R., & Perkins, D. N. (2005). Learning to Think : The Challenges of Teaching Thinking. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge Handbook of Thinking and Reasoning (1a ed) (pp. 775–802). New York: Cambridge University Press.
Rosa, P. R. da S. (2013). Uma Introduça O a Pesquisa Qualitativa Em Ensino De Ciencias. Campo Grande: Universidade Federal de Mato Grosso do Sul.
Sampson, V., & Clark, D. (2009). The Impact of collaboration on the outcomes of scientific argumentation. Science Education, 93(3), 448–484. DOI: 10.1002/sce.20306/
Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447–472. DOI: 10.1002/sce.20276
Serres, M. (2013). Polegarzinha. Rio de Janeiro: Bertrand Brasil.
Shaffer, P. S., & McDermott, L. C. (2005). A research-based approach to improving student understanding of the vector nature of kinematical concepts. American Journal of Physics, 73(10), 921–931. DOI: 10.1119/1.2000976
Slezak, C., Koenig, K. M., Endorf, R. J., & Braun, G. A. (2011). Investigating the Effectiveness of the Tutorials in Introductory Physics in Multiple Instructional Settings. Physical Review Special Topics - Physics Education Research, 7(2), 1–8. DOI: 10.1103/PhysRevSTPER.7.020116
Stephens, A. L., & Clement, J. J. (2010). Documenting the use of expert scientific reasoning processes by high school physics students. Physical Review Special Topics - Physics Education Research, 6(2), 1–15. DOI: 10.1103/PhysRevSTPER.6.020122
Tang, X., Coffey, J. E., Elby, A., & Levin, D. M. (2010). The scientific method and scientific inquiry: Tensions in teaching and learning. Science Education, 94(1), 29–47. DOI: 10.1002/sce.20366
Toulmin, S. E. (1958). The Layout of Arguments. In The Uses of Argument - Updated edition (pp. 87–131). Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511840005.007
Tuyarot, D. E., & Eiras, W. da C. S. (2011). Investigando os “Tutoriais em Física Introdutória” no Ensino Médio. In XIX Simpósio Nacional de Ensino de Física (pp. 1–10). Manaus: SBF.
Tytler, R., & Peterson, S. (2003). Tracing Young Children’s Scientific Reasoning. Research in Science Education, 33(4), 433–465. DOI: 10.1023/B:RISE.0000005250.04426.67
Valanides, N., Papageorgiou, M., & Angeli, C. (2013). Scientific Investigations of Elementary School Children. Journal of Science Education and Technology, 23(1), 26–36.
Vaz, A. M. (2016). O exercício da função: professor de física e pesquisador em ensino. In Diálogo entre as múltiplas perspectivas na pesquisa em Ensino de Física (pp. 119–172). São Paulo: Livraria da Física.
Vieira, R. M., Tenreiro-vieira, C., & Martins, I. P. (2011). Critical thinking : Conceptual clarification and its importance in science education. Science Education International, 22(1), 43–54.
Waldrip, S., & Waldrip, B. (2014). Impact of a representational approach on students ’ reasoning and conceptual understanding in learning mechanics. International Journal of Science and Mathematics Education, 12, 741–765. DOI: 10.1007/s10763-013-9431-y
Yun, S. M., & Kim, H.-B. (2014). Changes in Students’ Participation and Small Group Norms in Scientific Argumentation. Research in Science Education, 465–484. DOI: 10.1007/s11165-014-9432-z
Zavala, G., Alarcón, H., & Benegas, J. (2007). Innovative Training of In-service Teachers for Active Learning: A Short Teacher Development Course Based on Physics Education Research. Journal of Science Teacher Education, 18(4), 559–572. DOI: 10.1007/s10972-007-9054-7
Zimmerman, C. (2000). The Development of Scientific Reasoning Skills. Developmental Review, 20(1), 99–149. DOI: 10.1006/drev.1999.0497
Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172–223. DOI: 10.1016/j.dr.2006.12.001
Downloads
Published
How to Cite
Issue
Section
License
IENCI is an Open Access journal, which does not have to pay any charges either for the submission or processing of articles. The journal has adopted the definition of the Budapest Open Access Initiative (BOAI), which states that the users have the right to read, write down, copy, distribute, print, conduct searches and make direct links with the complete texts of the published articles.
The author responsible for the submission represents all the authors of the work and when the article is sent to the journal, guarantees that he has the permission of his/her co-authors to do so. In the same way, he/she provides an assurance that the article does not infringe authors´ rights and that there are no signs of plagiarism in the work. The journal is not responsible for any opinions that are expressed.
All the articles are published with a Creative Commons License Attribution Non-commercial 4.0 International. The authors hold the copyright of their works and must be contacted directly if there is any commercial interest in the use of their works.