Difficulties and improvements in the conceptual field of didactic-scientific modeling: a case study in an experimental physics course

Authors

  • Leonardo Albuquerque Heidemann Universidade Federal do Rio Grande do Sul
  • Ives Solano Araujo Universidade Federal do Rio Grande do Sul
  • Eliane Angela Veit Universidade Federal do Rio Grande do Sul

DOI:

https://doi.org/10.22600/1518-8795.ienci2018v23n2p352

Keywords:

didactic-scientific modeling, Modeling Episodes, experimental activities, physics teaching

Abstract

Many researchers argue that scientific models are mediators between theories and reality. They endorse that students need, somehow, to be involved in modeling-based activities to bridge the gap between scientific knowledge and the real world. In this article, it is reported a research based on this approach. It is part of a set of studies that evaluate the difficulties and advances of physics’ undergraduate students in situations that demand the construction, use and validation of scientific models. It is employed the Modeling Episodes methodology to design and conduct experimental activities about mechanical oscillations, fluids, and thermodynamics. Grounded on the Didactic-Scientific Modeling framework, it supported the idea that a scientific modeling process in physics can be seen as a conceptual field underlying the domain of specific conceptual fields of this science. It was evaluated the influence of the Modeling Episodes conducted on: the attitudes of undergraduate physics majors toward laboratory class; their understanding about concepts related to the process of scientific modeling, mainly on specific concepts about experimental work; and their advancement and difficulties to face experimental situations related to the construction, application and validation of didactic-scientific models. The main results showed that Modeling Episodes helped the students to: i) develop positive attitudes towards experimental activities; ii) deal with situations that demand concepts and action schemes related to conceptual field of didactic-scientific modeling. However, the students struggled to finish the Modeling Episodes due the lack of predicative and operative knowledge. These results show that modeling activities must permeate the entire curriculum of physics courses for students to become experts to construct, explore and validate scientific models.

References

Araujo, I. S., & Mazur, E. (2013). Instrução pelos colegas e ensino sob medida: uma proposta para o engajamento dos alunos no processo de ensino-aprendizagem de Física. Caderno Brasileiro de Ensino de Física, 30(2), 362-384. DOI: 10.5007/2175-7941.2013v30n2p362

Boulter, C. J., & Gilbert, J. K. (2000). Challenges and opportunities of developing models in science education. In Boulter, C. J., & Gilbert, J. K. (Org.), Developing models in science education (343-362). New York: Kluwer Academic Publishers. DOI: 10.1007/978-94-010-0876-1_18

Brandão, R. V. (2012). A estratégia da modelagem didático-científica reflexiva para a conceitualização do real no ensino de Física (Tese de Doutorado em Ensino de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre). Recuperado de http://hdl.handle.net/10183/70335

Brandão, R. V. , Araujo, I. S., & Veit. E. A. (2012). A modelagem científica vista como um campo conceitual. Caderno Brasileiro de Ensino de Física, 28(1) 507-545. DOI: 10.5007/2175-7941.2011v28n3p507

Bunge, M. (1974). Teoria e realidade. São Paulo: Editora Perspectiva.

Bunge, M. (2010). Caçando a realidade. São Paulo: Editora Perspectiva.

Day, C. (2015, 5 de maio). Why I didn't become an experimental physicist. DOI: 10.1063/PT.5.010313

Field, A. (2009). Discovering statistics using SPSS (and sex and drugs and rock ’n’ roll). Dubai: SAGE Publications.

Greca, I., & Moreira, M. A. (2002). Mental, physical, and mathematical models in the teaching and learning of physics. Science Education, 86(1) 106-121. DOI: 10.1002/sce.10013

Guillon, A., & Séré, M. (2002). The Role of Epistemological Information in open-ended Investigative Labwork. In Psillos, D.; Niedderer, H. (Eds.). Teaching and learning in science laboratory (121-138). New York: Kluwer Academic Publishers. DOI: 10.1007/0-306-48196-0_14

Heidemann, L. A. (2015). Ressignificação das atividades experimentais no ensino de física por meio do enfoque no processo de modelagem científica (Tese de Doutorado em Ensino de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre). Recuperado de http://hdl.handle.net/10183/117767

Heidemann, L. A., Araujo, I. S., Veit, E. A. (2012). Um referencial teórico-metodológico para o desenvolvimento de pesquisas sobre atitude: a Teoria do Comportamento Planejado de Icek Ajzen. Revista Electrónica de Investigación en Educación en Ciencias, 7(1), 22-31. Recuperado de http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1850-66662012000100003&lng=es&tlng=pt.

Heidemann, L. A., Araujo, I. S., Veit, E. A. (2015). Episódios de Modelagem sobre oscilações mecânicas, fluidos e termodinâmica. Recuperado de http://www.if.ufrgs.br/gpef/modelagem/hipermidia/.

Heidemann, L. A., Araujo, I. S., & Veit, E. A. (2016a). A integração de atividades teóricas e experimentais no ensino de física através de ciclos de modelagem: um estudo de caso exploratório no ensino superior. Alexandria: Revista de Educação em Ciência e Tecnologia, 9(1), 151-178. DOI: 10.5007/1982-5153.2016v9n1p151

Heidemann, L. A., Araujo, I. S., & Veit, E. A. (2016b). Modelagem Didático-científica: integrando atividades experimentais e o processo de modelagem científica no ensino de Física. Caderno Brasileiro de Ensino de Física, 33(1), 3-32. DOI: 10.5007/2175-7941.2016v33n1p3

Heidemann, L. A., Araujo, I. S., & Veit, E. A. (2016c). Atividades experimentais com enfoque no processo de modelagem científica: Uma alternativa para a ressignificação das aulas de laboratório em cursos de graduação em física. Revista Brasileira de Ensino de Física, 38(1), 1504. DOI: 10.1590/S1806-11173812080

Heidemann, L. A., Araujo, I. S., & Veit. E. A. (2017). Um estudo de caso explanatório sobre o desenvolvimento de atividades experimentais com enfoque no processo de modelagem científica para o ensino de Física. Revista Brasileira de Ensino de Ciência e Tecnologia, 10(3), 379-405. DOI: 10.3895/rbect.v10n3.5672

Hestenes, D. (2006). Notes for a Modeling Theory of Science, Cognition and Instruction. In Girep Conference: Modelling in Physics and Physics Education. Amsterdam, Netherlands. Recuperado de http://modeling.asu.edu/R&E/Notes_on_Modeling_Theory.pdf

Hodson, D. (1994). Hacia un enfoque más crítico del trabajo de laboratorio. Enseñanza de las Ciencias, 12(3), 299-313. Recuperado de https://www.raco.cat/index.php/Ensenanza/article/download/21370/93326

Jackson, J., Dukerich, L., & Hestenes, D. (2008). Modeling Instruction: an effective model for Science Education. Science Educator, 17(1), 10-17. Recuperado de https://files.eric.ed.gov/fulltext/EJ851867.pdf.

Justi, R. S., & Gilbert, J. K. (2002) Modelling, teachers’ views on the nature of mode lling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387. DOI: 10.1080/09500690110110142

Krapas, S. , Queiroz, G., Colinvaux, D. & Franco, C. (1997). Modelos: uma análise de sentidos na literatura de pesquisa em Ensino de Ciências. Investigações em Ensino de Ciências. 2(3), 185-205. Recuperado de https://www.if.ufrgs.br/cref/ojs/index.php/ienci/article/view/627/416

Kneubil, F. B. (2016). Models in physics teaching: an approach to highlight the nature of knowledge. Physics Education, 51(6), 1-6. Recuperado de http://iopscience.iop.org/article/10.1088/0031-9120/51/6/065008/meta

Koponen, I. T. (2007). Models and modelling in Physics Education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16(7), 751-773. DOI: 10.1007/s11191-006-9000-7

López-Ríos, S., Veit, E. A., & Araujo, I. S. (2011). Modelación computacional apoyada en el uso del diagrama V de Gowin para el aprendizaje de conceptos de dinámica newtoniana. Revista Electrónica de Enseñanza de las Ciencias, 10(1), 202-226. Recuperado de http://reec.uvigo.es/volumenes/volumen10/ART10_Vol10_N1.pdf

Louca, L., & Zacharia, Z. (2012). Modeling-based learning in Science education: cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64(4), 471 492. DOI: 10.1080/00131911.2011.628748.

Panadero, E., & Jonsson, A. (2013). The use of scoring rubrics for formative assessment purposes revisited: A review. Educational Research Review, 9, 129-144. DOI: 10.1016/j.edurev.2013.01.002

Pietrocola, M. (1999). Construção e realidade: o realismo científico de Mario Bunge e o ensino de ciências através de modelos. Investigações em Ensino de Ciências, 4(3), 213-227. Recuperado de https://www.if.ufrgs.br/cref/ojs/index.php/ienci/article/view/604

Trumper, R. (2003). The physics laboratory A historical overview and future perspectives. Science & Education, 12(7), 645-670. DOI: 10.1023/A:1025692409001

Vergnaud, G. (2009). The theory of conceptual fields. Human Development, Basel, 52(2), 83-94, 2009. DOI: 10.1159/000202727

__________. (2013). Por qué la teoría de los campos conceptuales? Infancia y Aprendizaje, 36(2), 131-161. 10.1174/021037013806196283

Yin, R. K. (2005). Estudo de caso: planejamento e métodos. (3a. ed.). Porto Alegre: Bookman.

__________. (2011). Qualitative research from start to finish. New York: The Guilford Press.

Published

2018-08-30

How to Cite

Heidemann, L. A., Araujo, I. S., & Veit, E. A. (2018). Difficulties and improvements in the conceptual field of didactic-scientific modeling: a case study in an experimental physics course. Investigations in Science Education, 23(2), 352–382. https://doi.org/10.22600/1518-8795.ienci2018v23n2p352