MODELOS PARCIALES POSIBLES DE LA HERENCIA GENÉTICA EN ESTUDIANTES DE BACHILLERATO
DOI:
https://doi.org/10.22600/1518-8795.ienci2023v28n3p148Palavras-chave:
Modelos mentales, representaciones mentales, representaciones simbólicas, herencia genética, bachilleratoResumo
Este trabajo analiza los modelos mentales desde la perspectiva de los Modelos Parciales Posibles (MPP), que permiten conocer el funcionamiento de los procesos explicativos de los estudiantes para una determinada fenomenología. La muestra se conformó por 186 alumnos de bachillerato que cursaban la asignatura de Biología V, quienes resolvieron un cuestionario previamente validado. Los resultados evidenciaron tres modelos. Los MPPI y MPPII revelan concepciones sustancialistas y estáticas de los procesos genéticos, que llevan al alumno a generar explicaciones lejanas al conocimiento científico. Los alumnos con el MPPIII realizan inferencias más completas y cercanas al conocimiento científico, estableciendo relaciones entre los mecanismos de herencia y los procesos meióticos. Estos hallazgos permiten reconocer que todos los estudiantes de la muestra pueden construir explicaciones sobre la herencia genética y pone de manifiesto la importancia que hagan explícitos sus razonamientos para identificar los principales problemas de comprensión del tema.Referências
Aivelo, T., & Uitto A. (2021). Factors explaining students’ attitudes towards learning genetics and belief in genetic determinism. International Journal of Science Education, 43(9), 1408-1425. https://doi.org/10.1080/09500693.2021.1917789
Albaladejo, C., & Lucas, A. (1988). Pupils’ meanings for «mutation». Journal of Biological Education, 22(3), 215-219. https://doi.org/10.1080/00219266.1988.9654986
Altunoğlu, B., & Şeker, M. (2015). The Understandings of Genetics Concepts and Learning Approach of Pre-Service Science Teachers. Journal of Educational and Social Research, 5(1 S1), 61. Recuperado de https://www.richtmann.org/journal/index.php/jesr/article/view/6307
Amin, T., Smith, C., & Wiser, M. (2014). Student Conceptions and Conceptual Change: Three Overlapping Phases of Research. In N. Lederman & S. Abell (Eds.), Handbook of Research on Science Education (pp. 57-81), Nueva York, United States of America: Routledge.
Argento, D. (2013). Estudio exploratorio sobre preconcepciones en el área de Genética en alumnos de secundaria italianos y españoles. (Tesis de maestría). Universidad Internacional de La Rioja. Madrid. España. Recuperado de https://reunir.unir.net/bitstream/handle/123456789/1425/2013_01_30_TFM_ESTUDIO_DEL_TRABAJO.pdfhttps://reunir.unir.net
Bahar, M., Johnstone. A., & Hansell M. (1999). Revisiting learning difficulties in biology. Journal of Biological Education, 33(2), 84-86. https://doi.org/10.1080/00219266.1999.9655648
Banet, E., & Ayuso E. (2000). Teaching Genetics at Secondary School: A Strategy for Teaching about the Location of Inheritance Information. Science Education, 84(3), 313-351. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<313::AID-SCE2>3.0.CO;2-N
Bugallo, A. (1995). La didáctica de la genética: revisión bibliográfica. Enseñanza de las Ciencias, 13(3), 379-385. https://doi.org/10.5565/rev/ensciencias.4258
Caballero, M. (2008). Algunas ideas del alumnado de secundaria sobre conceptos básicos de genética. Enseñanza de las Ciencias, 26(2), 227-243. https://doi:10.5565/rev/ensciencias.3677
Castro-Faix, M., Duncan, R., & Choi, J. (2021). Data-driven refinements of a genetics learning progression. Journal of Research in Science Teaching, 58(1), 3–39. https://doi.org/10.1002/tea.21631
Clement, J., & Brown, D. (2009). Using analogies and models in instruction to deal with students’ preconceptions. In J. Clement (Ed.), Creative model construction in scientist and students. The role of imagery, analogy and mental simulation (pp. 139-155). Dordrecht, Netherlands: Springer.
https://doi.org/10.1007/978-1-4020-6712-9_10
Coll, R., & Lajium, D. (2011). Modeling and the future of science learning. In M. Khine & I. Saleh (Eds.), Models and modeling. Cognitive tools for scientific enquiry (pp. 3-22). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-007-0449-7_1
Contessa, G. (2007), Scientific representation, interpretation, and surrogative reasoning. Philosophy of Science, 74(1), 48-68. https://doi.org/10.1086/519478
diSessa, A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2-3), 105-225. https://doi.org/10.1080/07370008.1985.9649008
diSessa, A. (2014), The construction of causal schemes: learning mechanisms at the knowledge level. Cognitive Science, 38(5), 795-850. https://doi.org/10.1111/cogs.12131
Duncan, R., & Reiser, B. (2007). Reasoning across ontologically distinct levels: students’ understandings of molecular genetics. Journal of Research in Science Teaching, 44(7), 938-959. https://doi.org/10.1002/tea.20186
Duncan, R., Rogat, A., & Yarder, A. (2009). A learning progression for deepening students’ understandings of modern genetics across the 5th-10th grades. Journal of Research in Science Teaching, 46(6), 655-674. https://doi.org/10.1002/tea.20312
Escuela Nacional Preparatoria (ENP). (2017). Programa de estudios de la asignatura de Biología V, Universidad Nacional Autónoma de México, Ciudad de México, México. Recuperado de https://www.dgire.unam.mx/webdgire/planes-de-estudio-y-programas-operativos/plan-y-programas-indicativos-escuela-nacional-preparatoria/
Estébanez-Alonso, J. (2014). Análisis de los conocimientos e ideas previas sobre genética de alumnos que comienzan 4° de ESO comparados con los alumnos de 1° de bachillerato. (Tesis de maestría). Universidad Internacional de La Rioja. Madrid. España. Recuperado de https://reunir.unir.net/handle/123456789/2648
Flores-Camacho F. & Gallegos-Cázares L. (1998). Partial Possible Models: An approach to interpret students’ physical representation. Science Education, 82, 15-29. https://doi.org/10.1002/(SICI)1098-237X(199801)82:1<15::AID-SCE2>3.0.CO;2-3
Flores-Camacho, F., García-Rivera, B. E., Báez-Islas, A., & Gallegos-Cázares, L. (2017). Diseño y Validación de un Instrumento para Analizar las Representaciones Externas de Estudiantes de Bachillerato sobre Genética. Revista Iberoamericana De Evaluación Educativa, 10(2). https://doi.org/10.15366/riee2017.10.2.008
Flores-Camacho, F., Calderón-Canales, E., García-Rivera, B., Gallegos-Cázares, L., & Báez-Islas, A. (2021). Representational Trajectories in the Understanding of Mendelian Genetics. Journal of Mathematics, Science and Technology Education, 17(8), https://doi.org/10.29333/ejmste/10998
Gericke, N., & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understanding of genetics. Science & Education, 16, 849–881. https://doi.org/10.1007/s11191-006-9064-4
Gallegos-Cázares, L., Flores-Camacho, F., Calderón-Canales, E., Perrusquía-Máximo, E. & García-Rivera, B. (2014). Children’s models about colours in nahuatl-speaking communities. Research in Science Education, 44, 699-725. https://doi:10.1007/s11165-014-9399-9
Gallegos-Cázares, L., Flores-Camacho, F., Calderón-Canales E. & Posada, J. (2017). Representations over the earth’s shape and the process of day and night from Nahua indigenous schoolchildren, Infancia y Aprendizaje, 40(2), 343-380. https://doi:10.1080/02103702.2017.1292683
Gilbert, S. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79. https://doi.org/10.1002/tea.3660280107
Gilbert, J., Boulter, C., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. Gilbert & C. Boulter (Eds.), Developing models in science education, (pp. 3-17). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-010-0876-1_1
Gilbert, J., & Justi, R. (2016). Modelling-based teaching in science education. In J. Gilbert (Ed.), Models and modeling in Science Education, (pp. 41-56). Basel, Switzerland: Springer https://doi.org/10.1007/978-3-319-29039-3
Gutiérrez, R. (2005). Polisemia actual del concepto “modelo mental”: Consecuencias para la investigación didáctica, Investigações em Ensino de Ciências, 10(2), 209-226. Recuperado de https://ienci.if.ufrgs.br/index.php/ienci/article/view/517
Hackling, M., & Treagust, D. (1984). Research data necessary for meaningful review of grade ten high school genetics curricula. Journal of Research in Science Teaching, 21(2), 197-209. https://doi.org/10.1002/tea.3660210210
Hadenfeldt, J., Neumann, K., Bernholt, S., Liu, X., & Parchmann, I. (2016). Students' progression in understanding the matter concept. Journal of Research in Science Teaching, 53(5), 683–708. https://doi.org/10.1002/tea.21312
Halloun, I. (2004). Modeling theory in science education. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/1-4020-2140-2
Harrison, A., & Treagust, D. (2000). A typology of school science models, International Journal of Science Education, 22(9), 1011-1026. https://doi.org/10.1080/095006900416884
Haskel-Ittah, M., & Yarden, A. (2018). Students’ Conception of Genetic Phenomena and Its Effect on Their Ability to Understand the Underlying Mechanism. CBE Life Sciences Education 17(3), 1-9. https://doi.org/10.1187/cbe.18-01-0014
Ibáñez, T., & Martínez, M. (2005). Solving problems in genetic II: Conceptual restructuring. International Journal of Science Education, 27(12), 1495-1519. https://doi.org/10.1080/09500690500186584
Iñiguez, F. (2005). La enseñanza de la genética, una propuesta didáctica para la educación secundaria obligatoria desde una perspectiva constructivista. (Tesis de doctorado). Universidad de Barcelona. Barcelona. España. Recuperado de http://hdl.handle.net/2445/41444
Iñiguez, F., & Puigcerver, M. (2013). Una propuesta didáctica para la enseñanza de la genética en la educación secundaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10(3),307-327. Recuperado de http://hdl.handle.net/10498/15441
Jalmo, T., & Suwandi, T. (2018). Biology education students’ mental models on genetic concepts. Journal of Baltic Science Education,17(3), 474-485. https://doi.org/10.33225/jbse/18.17.474
Johnson-Laird, P. (1983). Mental models, Cambridge, Massachusetts, United States of America: Harvard University Press.
Kiliç, D., & Sağlam, N. (2014). Students’ understanding of genetics concepts: the effect of reasoning ability and learning approaches, Journal of Biological Education, 48(2), 63-70.
https://doi.org/10.1080/00219266.2013.837402
Kinnear, J. (1983). Identification of misconceptions in genetics and the use of computer simulations in their correction. In H. Helms & J. Novak (Eds.), Proceedings of the International Seminar on Misconceptions in Science and Mathematics, (pp. 84-92), Ithaca, New York, United States of America: Cornell University.
Knippels, M., Waarlo A., & Boersma, K. (2005) Design criteria for learning and teaching genetics, Journal of Biological Education, 39(3), 108-112. https://doi.org/10.1080/00219266.2005.9655976
Knuuttila, T. (2011). Modelling and representing: an artefactual approach to model-based representation. Studies in History and Philosophy of Science, 42(2), 262-271. https://doi.org/10.1016/j.shpsa.2010.11.034
Legarralde, T., Gallarreta, S., Vilches, A., & Menconi, F. (2014). Representaciones sobre el concepto de “gameta” en futuros profesores de Biología. El papel de los libros de texto. Revista de Educación en Biología, 17(1), 55-69. Recuperado de http://sedici.unlp.edu.ar/handle/10915/127441
Lewis, J., Leach, J., & Wood-Robinson, C. (2000a), All in the genes? Young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 74-79. https://doi.org/10.1080/00219266.2000.9655689
Lewis, J., Leach, J., & Wood-Robinson, C. (2000b). Chromosomes: The missing link. Young people’s understanding of Mitosis, Meiosis, and Fertilization. Journal of Biological Education, 34(4), 89-199. https://doi.org/10.1080/00219266.2000.9655717
Lewis, J., Leach, J., & Wood-Robinson, C. (2000c). What’s in a Cell? Young people’s understanding of the Genetic relationship between Cells, within an individual. Journal of Biological Education, 34(3), 129-132. https://doi.org/10.1080/00219266.2000.9655702
Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: re-visiting students’ understandings of genetics. International Journal of Science Education, 26(2), 195-206. https://doi.org/10.1080/0950069032000072782
Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance: do students see any relationship? International Journal of Science Education, 22(2), 177-195. https://doi.org/10.1080/095006900289949
Marbach-Ad, G., Rotbain, Y., & Stavy, Ruth. (2008). Using computer animation and illustration to improve High School students’ achievement in Molecular Genetics. Journal of Research in Science Teaching, 45(3), 273-292. https://doi.org/10.1002/tea.20222
Martins, I., & Ogborn, J. (1997). Metaphorical reasoning about genetics. International Journal of Science Education, 17(1), 47-63. https://doi.org/10.1080/0950069970190104
Mills-Shaw, K., Van Horne, K., Zhang, H., & Boughman, J. (2008). Essay contest reveals misconceptions of high school students in genetics content. Genetics, 178(3), 1157-1168. https://doi.org/10.1534/genetics.107.084194
Muela, F., & Abril, A. (2014). Genetics and Cinema: Personal Misconceptions that Constitute obstacles to Learning. International Journal of Science Education, Part B: Communication and Public Engagement, 4(3), 260-280. https://doi.org/10.1080/21548455.2013.817026
Nersessian, N. (2013). Mental modeling in conceptual change. In S. Vosniadou (Ed.), International Handbook of Research in Conceptual Change, (pp. 395-411), New York, United States of America: Routledge. https://doi:10.1007/s11191-010-9283-6
Pozo, J., & Flores, F. (2007), Cambio conceptual y representacional en el aprendizaje y la enseñanza de la ciencia, Madrid, España: Antonio Machado Libros
Prain, V., & Tytler, R. (2012). Learning through constructing representations in science: a framework of representational construction affordances, International Journal of Science Education, 34(17), 2751-2773. https://doi.org/10.1080/09500693.2011.626462
Rosária, J. (2006). La enseñanza de ciencias basada en la elaboración de modelos. Enseñanza de las ciencias, 24(2), 173-184. Recuperado de https://www.raco.cat/index.php/ensenanza/article/view/75824
Rotbain, Y., Marbach-Ad, G., & Stavy, R. (2006). Effect of bead and illustrations models on High School students’ achievement in Molecular Genetics. Journal of Research in Science Teaching, 43(5), 500-529. https://doi.org/10.1002/tea.20144
Saka, A., Cerrah, L., Akdeniz, A., & Ayas, A. (2006). A Cross-age study of the understanding of three genetic concepts: How do they image the gene, DNA and chromosome? Journal of Science Education and Technology, 15(2), 192-202. https://doi.org/10.1007/s10956-006-9006-6
Sensevy, G., Tiberghien, A., Sylvain, J., & Griggs, P. (2007). An Epistemological Approach to Modeling: Cases Studies and Implications for Science Teaching. Science Education, 92(3), 424-446. https://doi.org/10.1002/sce.20268
Shea, N., & Duncan, R. (2013). From theory to data: The process of refining learning progressions. Journal of the Learning Sciences, 22(1), 7–32. https://doi.org/10.1080/10508406.2012.691924
Sigüenza, A. (2000). Formación de modelos mentales en la resolución de problemas de genética. Enseñanza de las ciencias, 18(3), 439-450. https://doi.org/10.5565/rev/ensciencias.4030
Southard, K., Wince, T., Meddleton, S., & Bolger, M. S. (2016). Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms. CBE Life Sciences Education, 15(1), ar7. https://doi.org/10.1187/cbe.15-05-0114
Stewart, J. (1982). Difficulties experienced by High School students when learning basic Mendelian Genetics. The American Biology Teacher, 44(2), 80-89. https://doi.org/10.2307/4447413
Stewart, J., Cartier, J., & Passmore, C. (2005). Developing understanding through model-based inquiry. In S. Donovan & J. Bransford (Eds.), How students learn: History, mathematics, and science in the classroom, (pp. 515-565), Washington, DC, United States of America: The National Academies Press.
Strauss, A., & Corbin, J. (2002). Bases de la investigación cualitativa: técnicas y procedimientos para desarrollar la teoría fundada. Medellín, Colombia: Editorial Universidad de Antioquia.
Svoboda, J., & Passmore, C. (2013). The Strategies of Modeling on Biology Education. Science Education, 22, 119-142. https://doi.org/10.1007/s11191-011-9425-5
Thörne, K., Gericke, N., & Hagberg, M. (2013). Linguistic challenges in Mendelian genetics: Teachers’ talk in action. Science Education, 97(5), 695-722. https://doi.org/10.1002/sce.21075
Todd, A., & Romine, W. L. (2016). Validation of the learning progression-based assessment of modern genetics in a college context. International Journal of Science Education, 38(10), 1673–1698. https://doi.org/10.1080/09500693.2016.1212425
Todd, A., & Romine, W. L. (2017). Empirical validation of a modern genetics progression web for college biology students. International Journal of Science Education, 39, 488–505. https://doi.org/10.1080/09500693.2017.1296207
Todd, A., Romine, W., & Correa-Menendez, J. (2019). Modeling the transition from a phenotypic to genotypic conceptualization of genetics in a university-level introductory biology context. Research in Science Education, 49(2), 569–589. https://doi.org/10.1007/s11165-017-9626-2
Todd, A., Romine, W., Sadeghi, R., Cook Whitt, K., & Banerjee, T. (2022). How do high school students' genetics progression networks change due to genetics instruction and how do they stabilize years after instruction? Journal of Research in Science Teaching, 59(5), 779–807. https://doi.org/10.1002/tea.21744
Venville, G., & Treagust, D. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 34(9), 1031-1055. https://doi.org/10.1002/(SICI)1098-2736(199811)35:9<1031::AID-TEA5>3.0.CO;2-E
Venville, G., & Donovan, J. (2005). An Exploration of Young Children’s Understandings of Genetics Concepts from Ontological and Epistemological Perspectives. Science Education, 89(4), 614-633. https://doi.org/10.1002/sce.20061
Chu, Y. C. (2008). Learning Difficulties in Genetics and the Development of Related Attitudes in Taiwanese Junior High Schools. (Tesis de doctorado). University of Glasgow, Scotland. Reino Unido. Recuperada de: https://theses.gla.ac.uk/168/
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Beatriz Eugenia García Rivera, Leticia Gallegos Cázares, Fernando Flores Camacho, Araceli Báez Islas

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
A IENCI é uma revista de acesso aberto (Open Access), sem que haja a necessidade de pagamentos de taxas, seja para submissão ou processamento dos artigos. A revista adota a definição da Budapest Open Access Initiative (BOAI), ou seja, os usuários possuem o direito de ler, baixar, copiar, distribuir, imprimir, buscar e fazer links diretos para os textos completos dos artigos nela publicados.
O autor responsável pela submissão representa todos os autores do trabalho e, ao enviar o artigo para a revista, está garantindo que tem a permissão de todos para fazê-lo. Da mesma forma, assegura que o artigo não viola direitos autorais e que não há plágio no trabalho. A revista não se responsabiliza pelas opiniões emitidas.
Todos os artigos são publicados com a licença Creative Commons Atribuição-NãoComercial 4.0 Internacional. Os autores mantém os direitos autorais sobre suas produções, devendo ser contatados diretamente se houver interesse em uso comercial dos trabalhos.
