CONCEPTUAL FIELDS AND MAGNETIC FIELD: A THEORETICAL MODEL FOR EPISTEMOLOGICAL CLASSIFICATION OF TASKS IN MAGNETOSTATICS
DOI:
https://doi.org/10.22600/1518-8795.ienci2021v26n3p82Palavras-chave:
Conceptual Fields, Magnetic Field, Classification of TasksResumo
This work presents a theoretical model for epistemological classification of tasks in magnetostatics aimed at High School and Higher Education. The approach is based on the theory of conceptual fields and includes classification in terms of thought operations necessary to solve the tasks and in these situations’ parameters. Four primary classes of situations are proposed, namely, description of magnetic interactions, analogic symbolization of magnetic fields, non-analogic symbolization of magnetic fields and calculation of magnetic fields. These classes cannot be reduced one to another, however they can occur simultaneously in the same task. Each one was subdivided in secondary classes of situations based on parameters they can assume and ordered by epistemological complexity. As contributions for physics teaching research this work offers a theoretical-methodological model for analyzing students’ progression in the conceptual field of magnetostatics, a conceptual structure for building situations based on predicative and operational competences for understanding the concept of magnetic field, and a practical example of epistemological classification of situations that can be adapted for other areas of Science like Quantum Mechanics, for example.Referências
Abd-El-Khalick, F., & Lederman, N.G. (2000). Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665–701. https://doi.org/10.1080/09500690050044044
Bollen, L., Van kampen, P., Baily, C., & de Cock, M (2016). Qualitative investigation into students’ use of divergence and curl in electromagnetism, Physical Review Physics Education Research, 12, 020134. https://doi.org/10.1103/PhysRevPhysEducRes.12.020134
Bradamante, F., & Viennot, L. (2007) Mapping Gravitational and Magnetic Fields with Children 9–11: Relevance, difficulties and prospects. International Journal of Science Education, 29(3), 349–372. https://doi.org/10.1080/09500690600718245
Bunge, M. (2011) Caçando a realidade: a luta pelo realismo. São Paulo, SP: Perspectiva.
Campos E., Zavala, G., Zuza, K., & Guisasola, J. (2020) Students’ understanding of the concept of the electric field through conversions of multiple representations. Physical Review Physics Education Research, 16, 010135 https://doi.org/10.1103/PhysRevPhysEducRes.16.010135
Galili, I. (1995) Mechanics background influences students’ conceptions in electromagnetism. International Journal of Science Education, 17(3), 371-387. https://doi.org/10.1080/0950069950170308
Guisasola, J., Almudí, J. M., Salinas, J. Zuza, K., & Ceberio, M. (2008) The Gauss and Ampere laws: different laws but similar difficulties for students learning. European Journal of Physics, 29, 1005-1016. http://dx.doi.org/10.1088/0143-0807/29/5/013
Guisasola, J., Almudí, J. M., & Zubimendi, J. L. (2003) Dificultades de aprendizaje de los estudiantes universitarios en la teoria del Campo Magnético y elección de los objetivos de enseñanza. Enseñanza de las Ciencias, 21(1), 79-94. https://doi.org/10.1590/S1806-11172010000100011
Guisasola, J., Almudí, J., & Zubimendi, J. (2004) Difficulties in Learning the Introductory Magnetic Field Theory in the First Years of University. Science Education, 88 (3), 443–464. https://doi.org/10.1002/sce.10119
Jackson, J. D. (1999). Classical Electrodynamics. New York, United States of America: John Wiley & Sons.
Krapas, S., & Silva, M. (2008) O conceito de campo: polissemia nos manuais, significados na física do passado e da atualidade. Ciência & Educação (Bauru), 14(1), 15-53. https://doi.org/10.1590/S1516-73132008000100002
Kuhn, T. S. (1997) A estrutura das revoluções científicas. São Paulo, SP: Perspectiva.
Lemos, N. (1974) Energia magnetostática: uma dedução simples e geral. Revista Brasileira de Ensino de Física. 11(1), 24-29. Recuperado de http://www.sbfisica.org.br/rbef/pdf/vol11a03.pdf
Markman, A. (1999) Knowledge representation. Mahwah, United States of America: Lawrence Erlbaum Associates.
Mbonyiryivuze A., Yadav, L. L., & Amadalo, M. M. (2020) Students’ conceptual understanding of electricity and magnetism and its implications: a review. African Journal of Educational Studies in Mathematics and Sciences, 15 (2), 55-67. https://doi.org/10.4314/ajesms.v15i2.5
Nascimento, E. M. (2017) Integração entre álgebra e geometria no ensino da Matemática. (Dissertação de mestrado). Mestrado Profissional em Matemática. Universidade Federal do Viçosa, Viçosa, MG. Recuperado de https://www.locus.ufv.br/handle/123456789/11710
Nousianen, M., & Koponen, I. (2017) Pre-service physics teachers’ content knowledge of electric and magnetic field concepts: Conceptual facets and their balance. European Journal of Science and Mathematics Education, 5(1), 74-20. https://doi.org/10.30935/scimath/9499
Pantoja, G. C. (2015). Unidades de ensino potencialmente significativas em teoria eletromagnética: influências na aprendizagem de alunos de graduação e uma proposta inicial de um campo conceitual para o conceito de Campo Eletromagnético. (Tese de Doutorado). Programa de Pós-Graduação em Ensino de Física. Universidade Federal do Rio Grande do Sul, Porto Alegre, RS.
Pantoja, G. C., & Moreira, M. A. (2019a) Classificação de problemas em eletrostática: uma análise epistemológica rumo à construção de um campo conceitual para o conceito de campo eletrostático. Latin American Journal of Physics Education, 13(4), 4304. Recuperado de http://www.lajpe.org/dec19/13_4_04.pdf
Pantoja, G. C., & Moreira, M. A. (2019b) Investigando a implementação de uma Unidade de Ensino Potencialmente Significativa sobre o conceito de Campo Magnético em disciplinas de Física Geral. Revista Electronica de Investigación en Educación en Ciencias, 14(2), 1-16. Recuperado de http://www.scielo.org.ar/pdf/reiec/v14n2/v14n2a01.pdf
Pantoja, G. C. (2021). Campos Conceituais e Indução Eletromagnética: Classificação de Problemas em Eletrodinâmica. Revista Brasileira de Pesquisa em Educação em Ciências, e24370, 1-33. https://doi.org/10.28976/1984-2686rbpec2021u441473
Pocovi, M. C, & Finley, F. (2003) Historical Evolution of the Field View and Textbook Accounts. Science & Education, 12(4), 387-393. https://doi.org/10.1023/A:1024431115782
Rainson, S., & Viennot, L. (1999) Design and evaluation of a research-based teaching sequence: the superposition of electric field. International Journal of Science Education, 21(1), 1-16. https://doi.org/10.1080/095006999290804
Resnick, R., Halliday, D., & Krane, K. (2006) Física: volume 3 (5a ed.). Rio de Janeiro, RJ: LTC.
Scaife, T., & Heckler, A. (2010) Student understanding of the direction of the magnetic force on a charged particle. American Journal of Physics, 78(8), 869-876. https://doi.org/10.1119/1.3386587
Scaife, T., & Heckler, A. (2011) Interference between electric and magnetic concepts in introductory physics. Physics Review Special Topics: Physics Education Research, 7(1), 010104. https://doi.org/10.1103/PhysRevSTPER.7.010104
Uhden, O., Karam, R., Pietrocola, M., & Pospiech, G. (2012) Modelling Mathematical Reasoning in Physics Education. Science Education, 21, 485-506. https://doi.org/10.1007/s11191-011-9396-6
Vergnaud, G. (1982) A classification of cognitive tasks and operations of thought involved in addition and subtraction problems. In T. Carpenter, J. Moser, & T. Romberg (Eds.) Addition and subtraction. A cognitive perspective. (pp. 39-59). Routledge. http://dx.doi.org/10.4324/9781003046585-4
Vergnaud, G. (1998) A Comprehensive Theory of Representation for Mathematics Education. Journal of Mathematical Behavior, 17(2), 167-181. https://doi.org/10.1016/S0364-0213(99)80057-3
Vergnaud, G. (2009) The Theory of Conceptual Fields. Human Development, 52(2), 83–94. https://psycnet.apa.org/doi/10.1159/000202727
Vergnaud, G. (2012) Forme operatoire et forme predicative de la connaissance. Investigações em Ensino de Ciências, 17(2), 287-304. Recuperado de https://www.if.ufrgs.br/cref/ojs/index.php/ienci/article/view/187
Vergnaud, G. (2013) Pourquoi la the?orie des champs conceptuels? Infancia y Aprendizaje, 36(2), 131-161. http://dx.doi.org/10.1174/021037013806196283
Zuza, K., Almudí, J. M., & Guisasola, J. (2012) Revisión de la investigación acerca de las ideas de los estudiantes sobre la interpretación de los fenómenos de inducción electromagnética. Enseñanza de las Ciencias, 30(2), 175-196. Recuperado de https://www.raco.cat/index.php/Ensenanza/article/view/254509/391060
Zuza, K., Van Kampen, P., de Cock, M., Kelly, T., & Guisasola, J. (2018) Introductory university physics students’ understanding of some key characteristics of classical theory of the electromagnetic field. Physical Review Physics Education Research, 14(11), 020117. https://doi.org/10.1103/PhysRevPhysEducRes.14.020117
Downloads
Publicado
Como Citar
Edição
Seção
Licença
A IENCI é uma revista de acesso aberto (Open Access), sem que haja a necessidade de pagamentos de taxas, seja para submissão ou processamento dos artigos. A revista adota a definição da Budapest Open Access Initiative (BOAI), ou seja, os usuários possuem o direito de ler, baixar, copiar, distribuir, imprimir, buscar e fazer links diretos para os textos completos dos artigos nela publicados.
O autor responsável pela submissão representa todos os autores do trabalho e, ao enviar o artigo para a revista, está garantindo que tem a permissão de todos para fazê-lo. Da mesma forma, assegura que o artigo não viola direitos autorais e que não há plágio no trabalho. A revista não se responsabiliza pelas opiniões emitidas.
Todos os artigos são publicados com a licença Creative Commons Atribuição-NãoComercial 4.0 Internacional. Os autores mantém os direitos autorais sobre suas produções, devendo ser contatados diretamente se houver interesse em uso comercial dos trabalhos.